Esophageal, gastric, liver, and colorectal cancers represent four prevalent gastrointestinal cancers that pose substantial threats to global health due to their high morbidity and mortality rates. Peroxiredoxin 1 (PRDX1), a significant component of the PRDXs family, primarily functions to counteract the peroxides produced by metabolic activities in the body, thereby maintaining the dynamic equilibrium of peroxides . Intriguingly, PRDX1 expression correlates strongly with cancer's onset, progression, and prognosis. This study mainly applied bioinformatics methods to analyze PRDX1's expression, diagnosis, and prognosis in gastrointestinal cancers and to summarize current research advancements. Evidence from the bioinformatics database suggested that the high expression of PRDX1 was a prominent characteristic of these four gastrointestinal cancers, with this observation reaching statistical significance. The high expression of PRDX1 in gastrointestinal cancer cells also confirms this result. Notably, the primary alteration in PRDX1 within these cancers is the presence of genetic mutations. PRDX1 demonstrated the highest diagnostic efficacy for colorectal cancer. Nevertheless, elevated PRDX1 levels only significantly diminished the survival time of liver cancer patients, exerting no statistically significant impact on the survival duration of patients afflicted by the other three types of gastrointestinal cancers. Recent research has indicated variability in PRDX1 expression across different cancer types, with high expression being predominantly observed in these four gastrointestinal cancers and, in most instances, unfavorable prognosis. These findings broadly align with the results derived from bioinformatics. This research underscores the high expression of PRDX1 in gastrointestinal cancers, its relevance to the diagnosis and prognosis monitoring of these cancers, and its potential to guide clinical treatment for these cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539570 | PMC |
http://dx.doi.org/10.7150/jca.86568 | DOI Listing |
Aliment Pharmacol Ther
January 2025
Gastrointestinal and Liver Theme, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre (BRC), Nottingham University Hospitals NHS Trust and the University of Nottingham, School of Medicine, Queen's Medical Centre, Nottingham, UK.
Background: Colorectal cancer (CRC) is the third most common cancer in the United Kingdom and the second largest cause of cancer death.
Aim: To develop and validate a model using available information at the time of faecal immunochemical testing (FIT) in primary care to improve selection of symptomatic patients for CRC investigations.
Methods: We included all adults (≥ 18 years) referred to Nottingham University Hospitals NHS Trust between 2018 and 2022 with symptoms of suspected CRC who had a FIT.
Int J Surg
January 2025
Department of Surgical Oncology, Fourth Affiliated Hospital of China Medical University.
Background: Several autoimmune diseases (ADs) are considered risk factors for gastrointestinal (GI) cancers. This study pooled and appraised the evidence associating ADs to GI cancer risks.
Methods: Three databases were examined from initiation through 26 January 2024.
Front Artif Intell
December 2024
Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
One of the foremost causes of global healthcare burden is cancer of the gastrointestinal tract. The medical records, lab results, radiographs, endoscopic images, tissue samples, and medical histories of patients with gastrointestinal malignancies provide an enormous amount of medical data. There are encouraging signs that the advent of artificial intelligence could enhance the treatment of gastrointestinal issues with this data.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.
Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.
View Article and Find Full Text PDFFront Oncol
December 2024
The First Clinical Medical School, Lanzhou University, Lanzhou, China.
Objective: We conducted this study to investigate the relationship between serum uric acid (SUA) levels and the risk of upper gastrointestinal cancer.
Methods: We conducted a prospective cohort study with 475659 cancer-free participants from the UK Biobank. All subjects were grouped into quartiles, and we used a Cox proportional hazards model to analyze the association between SUA levels and the risk of upper gastrointestinal cancer and explore the potential sex-specific relationship.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!