Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we reported that sterile alpha motif and HD domain-containing protein 1 (SAMHD1) deficiency induced STING expression and inhibited tumor growth in DLBCL. High level of SAMHD1 was associated with poor prognosis in DLBCL patients. Down-regulation of SAMHD1 inhibited DLBCL cell proliferation both and . Moreover, we found that SAMHD1 deficiency induced DNA damage and promoted the expression of DNA damage adaptor STING. STING overexpression promoted the formation of Caspase 8/RIPK3/ASC, further leading to MLKL phosphorylation, Caspase 3 cleavage, and GSDME cleavage. Up-regulation of necroptotic, apoptotic, and pyroptotic effectors indicated STING-mediated PANoptosis. Finally, we demonstrated that the STING agonist, DMXAA, enhanced the efficacy of a PD-L1 inhibitor in DLBCL. Our findings highlight the important role of STING-mediated PANoptosis in restricting DLBCL progression and provide a potential strategy for enhancing the efficacy of immune checkpoint inhibitor agents in DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535696PMC
http://dx.doi.org/10.7150/ijbs.85236DOI Listing

Publication Analysis

Top Keywords

samhd1 deficiency
12
efficacy pd-l1
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
deficiency induced
8
dna damage
8
sting-mediated panoptosis
8
dlbcl
7
sting
6

Similar Publications

Functional correlation between WRN and SAMHD1 in DNA end-resection.

MicroPubl Biol

May 2024

Dipartimento Ambiente e Salute, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Roma RM, Italia.

Double-strand breaks (DSBs) can cause chromosome rearrangements, leading to cancer and some genetic diseases. WRN and SAMHD1 are proteins implicated in DSB processing and form a complex. Our study shows that SAMHD1 influences the nuclear recruitment of WRN in response to CPT-induced DSBs.

View Article and Find Full Text PDF

Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined.

View Article and Find Full Text PDF

Deoxyguanosine-Linked Bifunctional Inhibitor of SAMHD1 dNTPase Activity and Nucleic Acid Binding.

ACS Chem Biol

October 2023

Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.

Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance.

View Article and Find Full Text PDF

SAMHD1 (Sterile alpha motif and histidine/aspartic acid domain-containing protein 1) is a dNTP triphosphohydrolase crucial in the maintenance of balanced cellular dNTP pools, which support genome integrity. In SAMHD1 deficient fibroblasts isolated from Aicardi-Goutières Syndrome (AGS) patients, all four DNA precursors are increased and markedly imbalanced with the largest effect on dGTP, a key player in the modulation of telomerase processivity. Here, we present data showing that SAMHD1, by restricting the dGTP pool, contributes to telomere maintenance in hTERT-immortalized human fibroblasts from AGS patients as well as in telomerase positive cancer cell lines.

View Article and Find Full Text PDF

Background: Sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) is a DNA end resection factor, which is involved in DNA damage repair and innate immunity. However, the role of SAMHD1 in anti-tumor immunity is still unknown. This study investigated the effects of SAMHD1 on stimulator of interferon genes (STING)-type I interferon (IFN) pathway and radiation-induced immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!