Enzymatic electrochemical sensors have become the leading glucose detection technology due to their rapid response, affordability, portability, selectivity, and sensitivity. However, the performance of these sensors is highly dependent on the surface properties of the electrode material used to store glucose oxidase and its ability to retain enzymatic activity under variable environmental conditions. Mesoporous thin films have recently attracted considerable attention as promising candidates for enzyme storage and activity preservation due to their well-defined nanoarchitecture and tunable surface properties. Herein, we systematically compare pathways for the immobilization of glucose oxidase (GOx) and their effectiveness in electrochemical glucose sensing, following modification protocols that lead to the electrostatic attraction (amino functionalization), covalent bonding (aldehyde functionalization), and electrostatic repulsion (oxygen plasma treatment) of the ordered porous aluminosilicate-coated electrodes. By direct comparison using a quartz crystal microbalance, we demonstrate that glucose oxidase can be loaded in a nanoarchitecture with a pore size of ∼50 nm and pore interconnections of ∼35 nm using the native aluminosilicate surface, as well as after amino or aldehyde surface modification, while oxygen plasma exposure of the native surface inhibits glucose oxidase loading. Despite a variety of routes for enzyme loading, quantitative electrochemical glucose sensing between 0 and 20 mM was only possible when the porous surface was functionalized with amino groups, which we relate to the role of surface chemistry in accessing the underlying substrate. Our results highlight the impact of rational surface modification on electrochemical biosensing performance and demonstrate the potential of tailoring porous nanoarchitecture surfaces for biosensing applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536975 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.3c01202 | DOI Listing |
Int J Biol Macromol
January 2025
School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China. Electronic address:
The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234 China. Electronic address:
A gold-cerium bimetallic asteroid nanoplatform (CeO@GNSs/Myr-HA) was obtained by electrostatically adsorbing ultra-small cerium dioxide (CeO) onto gold nanostars (GNSs) and further loading myricetin (Myr) and hyaluronic acid (HA). This nanoplatform exhibited three types of enzymatic properties-that is, GOD (glucose-oxidase), POD (peroxidase) and GSH-Ox (glutathione oxidase) mimicking catalytic activities. These enzymatic properties work together to effectively induce apoptosis in tumor cells.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.
Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland.
Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.
View Article and Find Full Text PDFBiomolecules
December 2024
Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain.
represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from (GOX).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!