Meat is often contaminated by food-borne pathogens, resulting in significant economic losses. Linalool from plant essential oils (EOs) has been reported to have excellent antibacterial properties. Therefore, this study aims to elucidate the mechanism of linalool against () based on proteomic and physiological indicators. The results indicated that linalool severely perturbed the expression levels of intracellular proteins, of which 208 were up-regulated and 49 were down-regulated. Moreover, linalool exerted its inhibitory effect mainly through the induction of amino acid limitation and insufficient energy levels based on the pathways involved in differential expressed proteins (DEPs). After 8 h, alkaline phosphatase (AKP) leakage increased 20.96 and 21.52-fold in the MIC and 2MIC groups while protein leakage increased 2.17 and 2.50-fold, respectively, which revealed the potential of linalool on cell structure damage combined with nucleic acid leakage. In addition, the ATP content decreased to 36.92% and 18.84% in the MIC and 2MIC groups, respectively when processed for 8 h. In particular, linalool could effectively control the quality change of fresh beef by measuring pH, total volatile basic nitrogen (TVB-N), total viable counts (TVC) while not affecting its sensory acceptability based on the result of sensory evaluation. This research provides theoretical insights for the development of linalool as a new natural antibacterial agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534181PMC
http://dx.doi.org/10.1016/j.fochx.2023.100837DOI Listing

Publication Analysis

Top Keywords

amino acid
8
linalool
8
mechanism linalool
8
fresh beef
8
leakage increased
8
mic 2mic
8
2mic groups
8
proteomics reveals
4
reveals energy
4
energy limitation
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission.

Sci Adv

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.

View Article and Find Full Text PDF

Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Increased localization of several SAC proteins was found upon depolymerization of microtubules by colchicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!