Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Barbell kinematics are an essential aspect of assessing weightlifting performance. This study aimed at analyzing the total variability of time series barbell kinematics during repeated lifts in the snatch and the clean and jerk at submaximal and maximal barbell loads.
Methods: In a test-retest design, seven male weightlifters lifted submaximal [85% planned one-repetition maximum (1RMp)] and maximal (97% 1RMp) loads in the snatch and the clean and jerk during training. Barbell trajectory, vertical velocity, and vertical acceleration were determined using video analysis. Standard error of measurement (SEM), intraclass correlation coefficient (ICC), and smallest real difference (SRD) were used to determine the total variability during the lifts. Hedge's g effect size was used to assess differences in SEM between submaximal and maximal loads.
Results: The main findings indicated that variability-in particular for the barbell velocity-was lower at maximal compared to submaximal barbell loads (g = 0.52-2.93). SEM of time series data showed that variability increased in the snatch and the clean and jerk from the 1st pull/dip to the catch position irrespectively of the barbell load.
Discussion: This study presents values of total variability of time series barbell kinematics during the snatch, the clean, and the jerk. Further, the SRD can be used to evaluate changes in barbell kinematics in response to training. In addition, when interpreting barbell kinematics, coaches should take into account that the variability of barbell kinematics can vary depending on the exercise and the barbell load.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534034 | PMC |
http://dx.doi.org/10.3389/fspor.2023.1264280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!