AI Article Synopsis

  • * In an investigation of subterranean isopods from Western Australia, seven endoglucanase genes were identified across both surface and cave species, suggesting these genes have been retained.
  • * Analysis indicates most cellulase genes are under purifying selection, showing they likely produce functional peptides, while some adaptations in subterranean lineages point to evolutionary changes linked to their unique environments and energy sources.

Article Abstract

Recent studies have identified a significant number of endogenous cellulase genes in various arthropods, including isopods, allowing them to process hydrocarbons efficiently as a food source. While this research has provided insight into underlying gene-level processes in cellulose decomposition by arthropods, little is known about the existence and expression of cellulase genes in species from cave environments where carbohydrates are sparse. To investigate whether endogenous cellulase genes are maintained in subterranean species, we sequenced the transcriptomes of two subterranean paraplatyarthrid isopod species from calcrete (carbonate) aquifers of central Western Australia and a related surface isopod species. Seven protein-coding open-reading frames associated with endoglucanase genes were identified in all species. Orthology inference analyses, using a wide range of cellulase sequences from available databases, supported the endogenous origin of the putative endoglucanase genes. Selection analyses revealed that these genes are primarily subject to purifying selection in most of the sites for both surface and subterranean isopod species, indicating that they are likely to encode functional peptides. Furthermore, evolutionary branch models supported the hypothesis of an adaptive shift in selective pressure acting on the subterranean lineages compared with the ancestral lineage and surface species. Branch-site models also revealed a few amino acid sites on the subterranean branches to be under positive selection, suggesting the acquisition of novel adaptations to the subterranean environments. These findings also imply that hydrocarbons exist in subsurface aquifers, albeit at reduced levels, and have been utilized by subterranean isopods as a source of energy for millions of years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541295PMC
http://dx.doi.org/10.1002/ece3.10552DOI Listing

Publication Analysis

Top Keywords

endoglucanase genes
12
cellulase genes
12
isopod species
12
subterranean
8
surface isopod
8
central western
8
western australia
8
endogenous cellulase
8
genes
7
species
7

Similar Publications

Recent research has revealed the calcium signaling significance in the production of cellulases in . While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in .

View Article and Find Full Text PDF

Mechanism of improved cellulase production by Trichoderma reesei in water-supply solid-state fermentation.

Bioresour Technol

December 2024

Sanya Institute of Nanjing Agricultural University, Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

High production cost of cellulases limits its commercial application on lignocellulose. Solid-state fermentation (SSF) has special advantages of water and energy conservation, however, the lack of free water and water loss during fermentation limits its application. In this paper, a constructed water-supply SSF was used to improve carboxymethyl cellulose activity and filter paper activity of 1.

View Article and Find Full Text PDF

The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei.

J Basic Microbiol

December 2024

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Device, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Sugar transporters are of great importance in sensing and transporting varied sugars for cellulase biosynthesis of lignocellulolytic fungi. Nevertheless, the function and the relevant mechanism of sugar transporters in fungal cellulase biosynthesis remain to be explored. Here, putative maltose transporters Mal1, Mal2, Mal3, Mal4, and Mal5 in Trichoderma reesei were investigated.

View Article and Find Full Text PDF

[Impact of Organic Amendment on the Bacterial Community and Rice Yield in Paddy Soil].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.

In this investigation, the influence of organic amendment on the structural and functional dynamics of soil microbial communities and its effect on rice productivity were examined. Five fertilization treatments from a 40-year field experiment were selected: no fertilizer (CK), inorganic NPK fertilizer (NPK), inorganic NPK combined with green manure (NG), inorganic NPK combined with green manure and pig manure (NGM), and inorganic NPK combined with green manure and rice straw (NGS). The findings revealed that the organic amendment enhanced the soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) levels, alongside an increase in rice yield; notably, the most significant improvements were observed with the NGM treatment.

View Article and Find Full Text PDF

Signaling pathways mediating the induction of preharvest fruit drop in litchi.

Front Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.

Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!