A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastics in Freshwater Ecosystems of India: Current Trends and Future Perspectives. | LitMetric

Microplastics (MPs)-i.e., plastic particles less than 5 mm in length-are becoming a growing environmental concern due to their potential ecotoxicological impacts on aquatic ecosystems. In India, MPs contamination is a significantly growing problem due to increased plastic production as well as its low rate of recycling. As a result, MPs research work in India has gained considerable attention in the last two decades. The objective of this study is to conduct a comprehensive review of the existing scientific literature on MPs in freshwater ecosystems (e.g., lakes and rivers) of India. A bibliographical search was used to conduct the literature review across a number of databases including ScienceDirect, Google Scholar, and ResearchGate. We found that in comparison to the marine ecosystem the source, transport, and fate of MPs in freshwater ecosystems of India are still underexplored, and we found only 18 relevant papers. This review work reveals that there is no standard procedure for separating MPs from water and sediment samples, and as a result, comparing the results was a challenging task. The larger MPs (>500 μm) in water and sediments were identified most commonly using the attenuated total reflection (ATR) Fourier Transform Infrared (FTIR) spectroscopy technique (ATR-FTIR), whereas smaller-sized MPs (<500 μm) were identified using FTIR fitted with a confocal microscope, also known as μ-FTIR imaging or chemical imaging. We found that white-colored fibers and fragments of polypropylene (PP), polyethylene terephthalate (PET), and polyethylene (PE) were the most common polymer types in the freshwater ecosystems of India. Although research on MPs in freshwater ecosystems of India has gained momentum over the past decade, the literature review reveals a limited understanding of the impact of MPs' weathering patterns, the role of biofouling, and the role of water hyacinths on freshwater ecosystem services in India. Furthermore, the fluxes of MPs to the Indian oceans are not constrained, and atmospheric transport in high-altitude mountains, which have already been made fragile by climate change, has not been fully investigated. This study, therefore, calls for additional assessments of MPs in freshwater ecosystems-particularly in the central parts of India.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536847PMC
http://dx.doi.org/10.1021/acsomega.3c01214DOI Listing

Publication Analysis

Top Keywords

freshwater ecosystems
12
ecosystems india
12
mps freshwater
8
mps
7
india
5
microplastics freshwater
4
ecosystems
4
india current
4
current trends
4
trends future
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!