Various studies report that aside from the adverse impact of the crude oil on the marine environment, there is the likelihood that chemical dispersants used on the surface of water as oil-treating agents themselves possess a degree of toxicity, which have additional effects on the environment. To eliminate the subject of toxicity, there exist several materials in nature that have the ability to form good emulsions, and such products include protein molecules. In this study, chicken feathers which are known to contain ≥90% protein were used to formulate a novel dispersant to disperse crude oil in seawater (35 ppt). Protein from chicken feathers was extracted and synthesized into the chicken feather protein (CFP) dispersant using deionized water as a solvent. Emulsions formed from CFP-synthesized dispersants were stable over a considerably long period of time, whereas the droplet sizes of the emulsion formed were on the average very small in diameter, making droplet coalescence very slow. The CFP dispersants exhibited moderate surface and interfacial activity at normal seawater salinity. Using the US EPA's baffled flask test, at 800 and 1000 mg/ml CFP surfactant-to-oil ratios, dispersion effectiveness values of 56.92 and 68.64 vol % were obtained, respectively, which show that CFP has a great potential in crude oil dispersion. Moreover, the acute toxicity test performed on Nile tilapia showed that CFP was practically nontoxic with an LC50 value of more than 100 mg/L after 96 h of exposure. The results obtained showed that the CFP dispersant is environmentally friendly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536068PMC
http://dx.doi.org/10.1021/acsomega.3c04417DOI Listing

Publication Analysis

Top Keywords

crude oil
16
chicken feather
8
feather protein
8
oil dispersion
8
marine environment
8
chicken feathers
8
cfp dispersant
8
cfp
6
protein
5
chicken
4

Similar Publications

Proximity to petrochemical industry and risk of childhood asthma occurrence.

Int J Hyg Environ Health

January 2025

National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan. Electronic address:

Adverse effects on the respiratory system were associated with intensive petroleum-related industrial activities. The study aimed to assess the impact of petrochemical exposure on childhood asthma using various surrogate indices. A singleton birth cohort from 2004 to 2017 was conducted, leveraging two linked nationwide databases in Taiwan.

View Article and Find Full Text PDF

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

Hydrogen is a promising clean energy source with geological reserves widely distributed globally, offering an annual flow exceeding 23 trillion grams. However, natural hydrogen extraction wells face unique safety challenges compared to conventional oil and gas wells. This paper reviews well safety concerns such as tubing/casing damage, cement/sealant failure, and excessive annular pressure buildup.

View Article and Find Full Text PDF

Microbial fuel cells to monitor natural attenuation around groundwater plumes.

Environ Sci Pollut Res Int

January 2025

School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.

This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!