Review on the Applications of Biomass-Derived Carbon Materials in Vanadium Redox Flow Batteries.

ACS Omega

Department of Energy Systems Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey.

Published: September 2023

AI Article Synopsis

  • The development of vanadium redox flow batteries (VRFBs) focuses on finding effective and affordable electrodes, which are enhanced by doping with electrocatalysts.
  • The use of biomass-derived carbon materials as electrocatalysts has gained attention for their availability, renewability, low cost, and potential for high energy efficiency.
  • Studies show that these biomass carbon-doped electrodes improve energy efficiency and electrochemical performance in VRFBs by reducing overpotentials and enhancing reaction kinetics.

Article Abstract

The development of vanadium redox flow batteries (VRFBs) requires the exploration of effective and affordable electrodes. In order to increase the electrochemical activity of these electrodes and decrease the polarizations, they are doped with an electrocatalyst. In this context, the use of biomass-derived materials as electrocatalysts in VRFBs has received much attention recently due to their widespread availability, renewable nature, low cost, and high energy efficiency. This paper aims to review the synthesis methods of biomass-derived carbon materials and their applications in VRFBs. In line with this aim, recent developments in carbon-based electrode modification methods and their electrochemical performance in VRFBs are summarized. The studies show that porous carbon electrocatalysts increase energy efficiency by reducing overpotentials and improving electrocatalytic activation. In addition, it is thought that biomass carbon doped electrocatalysts can improve the hydrophilicity of the electrodes, the transfer of vanadium ions, and the reaction kinetics. The highest charge voltage decrease rate of 8.61% was obtained in the , whereas the highest discharge voltage increase rate of 14.29% was observed in the twin cocoon, as in all reviewed studies. Furthermore, the maximum energy efficiency (75%) was achieved in a VRFB equipped with an electrode doped with carbon derived from and cuttlefish. It can be concluded from the reviewed studies that the electrochemical performances of electrodes doped with biomass-derived carbons in VRFBs are more effective than those of the bare electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534911PMC
http://dx.doi.org/10.1021/acsomega.3c03648DOI Listing

Publication Analysis

Top Keywords

energy efficiency
12
biomass-derived carbon
8
carbon materials
8
vanadium redox
8
redox flow
8
flow batteries
8
reviewed studies
8
carbon
5
vrfbs
5
electrodes
5

Similar Publications

Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.

View Article and Find Full Text PDF

Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO/NiP coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO/NiP) using a facile hydrothermal method followed by phosphorylation.

View Article and Find Full Text PDF

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

Toward a Free-Response Paradigm of Decision-Making in Spiking Neural Networks.

Neural Comput

January 2025

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200437, China

Spiking neural networks (SNNs) have attracted significant interest in the development of brain-inspired computing systems due to their energy efficiency and similarities to biological information processing. In contrast to continuous-valued artificial neural networks, which produce results in a single step, SNNs require multiple steps during inference to achieve a desired accuracy level, resulting in a burden in real-time response and energy efficiency. Inspired by the tradeoff between speed and accuracy in human and animal decision-making processes, which exhibit correlations among reaction times, task complexity, and decision confidence, an inquiry emerges regarding how an SNN model can benefit by implementing these attributes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!