The ongoing therapeutic revolution in multiple myeloma care can be traced to the turn of the millennium with the unanticipated discovery in 1999 that the cereblon binding small molecule thalidomide had profound clinical effectiveness and, simultaneously, the emergence of a new class of targeted therapies inhibiting the proteasome, both of which ultimately target ubiquitinated protein degradation. These contemporaneous discoveries forever changed the landscape of multiple myeloma care, substantially extending survival. Foreshadowing this seismic change, Nobel Prize winning work on the proteasome ubiquitin pathway had stimulated the development of highly specific proteasome inhibitor small molecules, particularly PS-341 (later named bortezomib). An abundance of the proteasome in hematologic malignancies had been recognized and thus PS-341 was logically being explored in relevant preclinical models. Concurrent with phase I trials, which were soon to prove the significant clinical relevance of preclinical models, the laboratory of Dr. Kenneth Anderson and colleagues at Dana-Farber, in partnership with Dr. Julian Adams and scientists at ProScript (later Millennium Pharmaceuticals) first demonstrated that the proteasome inhibitor PS-341 inhibited growth, induced apoptosis, and overcame drug resistance in human multiple myeloma cells. This landmark paper in Cancer Research set the stage for a paradigm shift in how multiple myeloma was managed across all stages of the disease, which changed the lives of patients worldwide. See related article by Hideshima and colleagues, Cancer Res 2001;61:3071-6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-23-2629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!