AI Article Synopsis

  • Angiogenesis and energy metabolism through exosomes from adipose mesenchymal stem cells (AMSC-exos) show potential as therapies for vascular diseases.
  • This study focused on the therapeutic effects of AMSC-exos on human umbilical vein endothelial cells (HUVECs) affected by oxygen and glucose deprivation (OGD), involving a specific pathway (SIX1/HBO1) that enhances cell function.
  • Results showed that AMSC-exos help HUVECs survive and improve their ability to form new blood vessels by enhancing glycolysis and reducing cell injury, suggesting a promising approach for treating ischemic diseases.

Article Abstract

Background: Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases.

Objectives: The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis.

Methods: AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression.

Results: Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis activating the SIX1/HBO1 signaling pathway.

Conclusion: The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/011574888X265623230921045240DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
six1/hbo1 signaling
12
adipose mesenchymal
8
mesenchymal stem
8
stem cell-derived
8
cell-derived exosomes
8
enhanced glycolysis
8
oxygen glucose
8
glucose deprivation
8
human umbilical
8

Similar Publications

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Many cell types are involved in the regulation of cutaneous wound healing in diabetes. Clarifying the mechanism of cell-cell interactions is important for identifying therapeutic targets for diabetic cutaneous ulcers. The function of vascular endothelial cells in the cutaneous microenvironment is critical, and a decrease in their biological function leads directly to refractory wound healing.

View Article and Find Full Text PDF

Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.

Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.

View Article and Find Full Text PDF

Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified.

View Article and Find Full Text PDF

Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!