The control of molecular motions is a central topic of molecular machine research. Molecular brakes are fundamental building blocks towards such goal as they allow deliberately decelerating specific motions after an outside stimulus is applied. Here we present azotriptycenes as structural framework for light-controlled molecular brakes. The intrinsic kinetics and their changes upon azotriptycene isomerization are scrutinized comprehensively by a mixed theoretical and variable temperature NMR approach. With azotriptycenes C-N bond rotation rates can be decelerated or accelerated reversibly by up to five orders of magnitude. Rate change effects are highly localized and are strongest for the C-N bond connecting a triptycene rotor fragment to the central diazo group. The detailed mechanistic insights provide a solid basis for further conscious design and applications in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202302267 | DOI Listing |
Ann Oncol
December 2024
Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA.
Background: Fibroblast growth factor receptor (FGFR) inhibitors have significantly improved outcomes for patients with FGFR-altered cholangiocarcinoma, leading to their regulatory approval in multiple countries. However, as with many targeted therapies, acquired resistance limits their efficacy. A comprehensive, multimodal approach is crucial to characterizing resistance patterns to FGFR inhibitors.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery , we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch.
View Article and Find Full Text PDFPhytomedicine
November 2024
Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, China; Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, China. Electronic address:
Background: Bruceine A(BA) has many pharmacological activities and significantly inhibits fibrosis in keloid fibroblasts. However, the underlying mechanisms have not yet been fully elucidated.
Objective: This study aimed to investigate the effects of BA on pulmonary fibrosis(PF) and explore its underlying mechanisms.
J Hazard Mater
November 2024
University of the Bundeswehr Munich, Faculty for Mechanical Engineering, Institute of Chemistry and Environmental Engineering, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; Joint Mass Spectrometry Center at Comprehensive Molecular Analytics (CMA), Environmental Health Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. Electronic address:
Non-exhaust emissions have gained increasing attention during the last years, with the upcoming EURO 7 regulation defining maximum PM emission factors for tire and brake emissions for the first time. This study, therefore, focusses on broadening the knowledge on chemical composition and physical characteristics of brake dust to define emission factors for heavy metal and organic pollutants. Particles from two pads were analyzed utilizing the Worldwide Harmonised Light Vehicle Test Procedure (WLTP) brake cycle.
View Article and Find Full Text PDFNature
November 2024
National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!