The addition of biochars and nanoparticles with adsorbed Azotobacter vinelandii and Bacillus megaterium alleviated damage from Fusarium infection in both tomato (Solanum lycopersicum) and watermelon (Citrullus lanatus) plants. Tomato and watermelon plants were grown in greenhouse for 28 and 30 days (respectively) and were treated with either nanoparticles (chitosan-coated mesoporous silica or nanoclay) or varying biochars (biochar produced by pyrolysis, gasification and pyrogasification). Treatments with nanoparticles and biochars were applied in two variants - with or without adsorbed plant-growth promoting bacteria (PGPR). Chitosan-coated mesoporous silica nanoparticles with adsorbed bacteria increased chlorophyll content in infected tomato and watermelon plants (1.12 times and 1.63 times, respectively) to a greater extent than nanoclay with adsorbed bacteria (1.10 times and 1.38 times, respectively). However, the impact on other endpoints (viability of plant cells, phosphorus and nitrogen content, as well antioxidative status) was species-specific. In all cases, plants treated with adsorbed bacteria responded better than plants without bacteria. For example, the content of antioxidative compounds in diseased watermelon plants increased nearly 46% upon addition of Aries biochar and by approximately 52% upon addition of Aries biochar with adsorbed bacteria. The overall effect on disease suppression was due to combination of the antifungal effects of both nanoparticles (and biochars) and plant-growth promoting bacteria. These findings suggest that nanoparticles or biochars with adsorbed PGPR could be viewed as a novel and sustainable solution for management of Fusarium wilt.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.108052 | DOI Listing |
J Biosci Bioeng
December 2024
Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
Extracorporeal blood purification techniques using magnetic beads, which physically remove bacteria, fungi, viruses, and cytokines (disease agents) from the blood causing sepsis, have been studied. However, magnetic bead influx, which causes hemolysis and cytotoxicity, is an important issue. This study proposed a novel method for removing Escherichia coli from the blood using liposomes with high biocompatibility.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.
View Article and Find Full Text PDFACS Omega
December 2024
Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
The infestation of tissue after implantation is a major problem as a bacterial biofilm can form on the surface of the implants, leading to implant-associated infections (IAIs). One approach to prevent such IAI is to apply antibacterial coatings consisting of polyelectrolyte multilayers (PEM) and bacteriophages (PHAGs). PEM were constructed by alternately adsorbing oppositely charged polyelectrolytes on a substrate according to the layer-by-layer concept.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
Volatile organic compounds (VOCs) are significant pollutants found in various environments, posing health risks. Traditionally, the gaseous VOCs are adsorbed and eluted in liquid phases, and then subjected to toxicity testing, which deviates from the actual exposure scenarios of gaseous VOCs. How the physical states of VOCs (gaseous or liquid) affect their toxicity has not been well understood.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
The source and after treatment of uranium, a key aspect of its use as a nuclear fuel, had been a topic of intense debate among developers. Therefore, a novel antimicrobial amidoxime-functionalized chitosan/polyacrylamide dual network hydrogel (CP-AO) had been developed utilizing a straightforward methodology. The results demonstrated excellent adsorption capacity and selectivity for uranium extraction under varying conditions, the U(VI) removal was above 94 % when pH was 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!