Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO NPs like Hensify are commonly radioenhancers, but SORT HfO NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202308098 | DOI Listing |
Beilstein J Nanotechnol
December 2024
School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India.
This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.
View Article and Find Full Text PDFNanoscale
December 2024
Department of Electronics and Nano Engineering, Aalto University, P.O. Box 13500, FI-00076 Aalto, Finland.
Correction for 'Broadening spectral responses and achieving environmental stability in SnS/Ag-NPs/HfO flexible phototransistors' by Muhammad Farooq Khan , , 2024, , 3622-3630, https://doi.org/10.1039/D3NR04626E.
View Article and Find Full Text PDFSci Total Environ
December 2024
Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, 603203, India. Electronic address:
Pila virens (P. virens) is an edible freshwater snail, widely distributed in Asia and Africa. P.
View Article and Find Full Text PDFACS Nano
August 2024
Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
It is crucial for understanding mechanisms of drug action to quantify the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution. Yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. The preferable method is using X-ray nano-computed tomography (Nano-CT) to observe and analyze drug distribution within cells, but it is time-consuming, requiring specialized expertise, and often subjective, particularly with ultrasmall metal nanoparticles (NPs).
View Article and Find Full Text PDFNano Lett
July 2024
FZU-Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic.
Fast emitting polymeric scintillators are requested in advanced applications where high speed detectors with a large signal-to-noise ratio are needed. However, their low density implies a weak stopping power of high energy radiation and thus a limited light output and sensitivity. To enhance their performance, polymeric scintillators can be loaded with dense nanoparticles (NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!