Propionate is a microbial metabolite formed in the gastrointestinal tract, and it affects host physiology as a source of energy and signaling molecule. Despite the importance of propionate, the biochemical pathways responsible for its formation are not clear in all microbes. For the succinate pathway used during fermentation, a key enzyme appears to be missing-one that oxidizes ferredoxin and reduces NAD. Here we show that Rnf [ferredoxin-NAD oxidoreductase (Na-transporting)] is this key enzyme in two abundant bacteria of the rumen (Prevotella brevis and Prevotella ruminicola). We found these bacteria form propionate, succinate, and acetate with the classic succinate pathway. Without ferredoxin:NAD oxidoreductase, redox cofactors would be unbalanced; it would produce almost equal excess amounts of reduced ferredoxin and oxidized NAD. By combining growth experiments, genomics, proteomics, and enzyme assays, we point to the possibility that these bacteria solve this problem by oxidizing ferredoxin and reducing NAD with Rnf [ferredoxin-NAD oxidoreductase (Na-transporting)]. Genomic and phenotypic data suggest many bacteria may use Rnf similarly. This work shows the ferredoxin:NAD oxidoreductase activity of Rnf is important to propionate formation in Prevotella species and other bacteria from the environment, and it provides fundamental knowledge for manipulating fermentative propionate production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542786 | PMC |
http://dx.doi.org/10.1038/s41598-023-43282-9 | DOI Listing |
Neoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFInvertebr Syst
January 2025
Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.
The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae.
View Article and Find Full Text PDFMetabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, People's Republic of China.
Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!