An optimized radioimmunoassay for quantification of total serum thyroxine (T4) in fetal, neonatal, and pregnant rats.

Neurotoxicol Teratol

Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA. Electronic address:

Published: November 2023

Identifying xenobiotics that interrupt the thyroid axis has significant public health implications, given that thyroid hormones are required for brain development. As such, some developmental and reproductive toxicology (DART) studies now require or recommend serum total thyroxine (T4) measurements in pregnant, lactating, and developing rats. However, serum T4 concentrations are normally low in the fetus and pup which makes quantification difficult. These challenges can be circumvented by technologies like mass spectrometry, but these approaches are expensive and not always widely available. To demonstrate the feasibility of measuring T4 using a commercially available assay, we examine technical replicates of rat serum samples measured both by liquid chromatography mass spectrometry (LC/MS/MS) and radioimmunoassay (RIA). These samples were obtained from rats on gestational day 20 (dams and fetuses) or postnatal day 5 (pups), following maternal exposure to the goitrogen propylthiouracil (0-3 ppm) to incrementally decrease T4. We show that with assay modification, it is possible to measure serum T4 using low sample volumes (25-50 μL) by an RIA, including in the GD20 fetus exposed to propylthiouracil. This proof-of-concept study demonstrates the technical feasibility of measuring serum T4 in DART studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2023.107303DOI Listing

Publication Analysis

Top Keywords

dart studies
8
mass spectrometry
8
feasibility measuring
8
serum
6
optimized radioimmunoassay
4
radioimmunoassay quantification
4
quantification total
4
total serum
4
serum thyroxine
4
thyroxine fetal
4

Similar Publications

Identification of plant-based spilled oils using direct analysis in real-time-time-of-flight mass spectrometry with hydrophobic paper sampling.

Environ Monit Assess

January 2025

Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.

Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.

View Article and Find Full Text PDF

In this study, antiulcer activity of ethanolic extract and solvent fractions of the aerial part of was investigated using ethanol-induced model of gastric ulceration in rats. The results showed that ethyl acetate, non-polar components and diethyl ether fractions have a remarkable antiulcerogenic activity; because they exhibited control-ulcer protection by 85.2%, 77.

View Article and Find Full Text PDF

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Contour uncertainty assessment for MD-omitted daily adaptive online head and neck radiotherapy.

Radiother Oncol

January 2025

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Background And Purpose: Daily online adaptive radiotherapy (DART) increases treatment accuracy by crafting daily customized plans that adjust to the patient's daily setup and anatomy. The routine application of DART is limited by its resource-intensive processes. This study proposes a novel DART strategy for head and neck squamous cell carcinoma (HNSCC), automizing the process by propagating physician-edited treatment contours for each fraction.

View Article and Find Full Text PDF

Purpose: To assess whether exposure to an extended-release (ER) oxycodone with abuse deterrent properties (ADF) reduced tampering of oxycodone in a real-world, postmarket setting to address the thinking behind Category 4 labeling by the FDA.

Methods: Data from an observational cross-sectional study of the general adult population (2022) was used under a causal framework to estimate the confounding-adjusted odds of tampering oxycodone after exposure to two types of ADF ER oxycodone. The tampering behaviors of those who used only single entity immediate-release (SE-IR) oxycodone was used as a comparison.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!