A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Review of machine learning-based surrogate models of groundwater contaminant modeling. | LitMetric

Review of machine learning-based surrogate models of groundwater contaminant modeling.

Environ Res

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China.

Published: December 2023

AI Article Synopsis

  • Heavy computational demands limit the use of groundwater contaminant models for tasks such as pollution source identification and remediation design; machine learning surrogate models provide a promising solution to improve efficiency.
  • A review of 120 studies from 1994 to 2022 highlights six main applications for these surrogate models, including pollution source identification and uncertainty analysis, with Latin hypercube sampling, ANNs, and Kriging being the most common techniques.
  • The review discusses the strengths and weaknesses of various methods and offers recommendations for their application, while also suggesting future research directions to improve the practical use of these models in real-world groundwater issues.

Article Abstract

Heavy computational load inhibits the application of groundwater contaminant numerical model to groundwater pollution source identification, remediation design, and uncertainty analysis, since a large number of model runs are required for these applications. Machine learning-based surrogate models are an effective approach to enhance the efficiency of the numerical models, and have recently attracted considerable attention in the field of groundwater contaminant modeling. Here, we review 120 research articles on machine learning-based surrogate models for groundwater contaminant modeling that were published between 1994 and 2022. We outline the state of the art method, identify the most significant research challenges, and suggest potential future directions. The six major applications of machine learning-based surrogate models are groundwater pollution source identification, groundwater remediation design, coastal aquifer management, uncertainty analysis of groundwater, groundwater monitoring network design, and groundwater transport parameters inversion. Together, these account for more than 90% of the studies we review. Latin hypercube sampling (LHS) is the most widely used sampling method, and artificial neural networks (ANNs) and Kriging are the two most widely used methods for constructing surrogate model. No method is universally superior, the advantages and disadvantages of different methods, as well as the applicability of these methods for different application purposes of groundwater contaminant modeling were analyzed. Some recommendations on the method selection for various application fields are given based on the reviews and experiences. Based on our review of the state-of-the-art, we suggest several future research directions to enhance the feasibility of the machine learning-based surrogate models of groundwater contaminant modeling: the alleviation of the curse of dimensionality, enhancing transferability, practical applications for real case studies, multi-source dada fusion, and real-time monitoring and prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117268DOI Listing

Publication Analysis

Top Keywords

groundwater contaminant
24
machine learning-based
20
learning-based surrogate
20
surrogate models
20
contaminant modeling
20
models groundwater
16
groundwater
12
groundwater pollution
8
pollution source
8
source identification
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!