Developing inexpensive, highly electrochemically active, and stable catalysts towards electrochemical studies remains challenge for researchers. In this regard, binder-free CoFe@PANI composite electrocatalyst is deposited on nickel foam (NF) substrate via successive electrodeposition of polyaniline (PANI) and CoFe-LDH at Room temperature (RT). As deposited binder-free CoFe@PANI electrocatalyst displays high electrocatalytic activity towards oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline media. In CoFe@PANI structure, interfacing of high-electron conducting PANI establishes strong interconnection with CoFe-LDH by tuning electronic structures, which accelerates the electrochemical performance towards OER and MOR. For OER, CoFe@PANI requires low overpotential (η) of 237 mV to reach current density (I) of 10 mA cm and displays low Tafel slope value of 46 mV dec in 1 M KOH solution. Also, it displayed specific I of 120 mA cm, when it was tested for MOR in 1 M KOH with 0.5 M methanol solution. The superior electrocatalytic activity of CoFe@PANI is mainly ascribed to high electrochemical active surface area (ECSA), abundant active sites and fast electron transfer between electrocatalyst and electrode surface. Of note, the current work may open new era for design and development of non-precious highly active and stable hybrid electrocatalysts at RT for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.123 | DOI Listing |
Dalton Trans
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China.
During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.
View Article and Find Full Text PDFSmall
January 2025
Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China.
Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO within CoMoO@CoO heterostructure via phosphorus doping (P-CoMoO@CoO) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.
View Article and Find Full Text PDFSmall
January 2025
Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India.
Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!