Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Metabolic biomarkers can potentially inform disease progression in Alzheimer's disease (AD). The purpose of this study is to identify and describe a new set of diagnostic biomarkers for developing deep learning (DL) tools to predict AD using Ultra Performance Liquid Chromatography Mass Spectrometry (UPLC-MS/MS)-based metabolomics data.
Methods: A total of 177 individuals, including 78 with AD and 99 with cognitive normal (CN), were selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort along with 150 metabolomic biomarkers. We performed feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO). The H2O DL function was used to build multilayer feedforward neural networks to predict AD.
Results: The LASSO selected 21 metabolic biomarkers. To develop DL models, the 21 biomarkers identified by LASSO were imported into the H2O package. The data was split into 70% for training and 30% for validation. The best DL model with two layers and 18 neurons achieved an accuracy of 0.881, F1-score of 0.892, and AUC of 0.873. Several metabolomic biomarkers involved in glucose and lipid metabolism, in particular bile acid metabolites, were associated with APOE-ε4 allele and clinical biomarkers (Aβ42, tTau, pTau), cognitive assessments [the Alzheimer's Disease Assessment Scale-cognitive subscale 13 (ADAS13), the Mini-Mental State Examination (MMSE)], and hippocampus volume.
Conclusions: This study identified a new set of diagnostic metabolomic biomarkers for developing DL tools to predict AD. These biomarkers may help with early diagnosis, prognostic risk stratification, and/or early treatment interventions for patients at risk for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jns.2023.120812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!