A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small molecule screen identifies pyrimethamine as an inhibitor of NRF2-driven esophageal hyperplasia. | LitMetric

Small molecule screen identifies pyrimethamine as an inhibitor of NRF2-driven esophageal hyperplasia.

Redox Biol

Coriell Institute for Medical Research, Camden, NJ, 08103, USA; Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, USA; Surgical Research Lab, Department of Surgery, Cooper University Health Care, Camden, NJ, 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA; Cooper Medical School of Rowan University, Camden, NJ, 08103, USA. Electronic address:

Published: November 2023

Objective: NRF2 is a master transcription factor that regulates the stress response. NRF2 is frequently mutated and activated in human esophageal squamous cell carcinoma (ESCC), which drives resistance to chemotherapy and radiation therapy. Therefore, a great need exists for NRF2 inhibitors for targeted therapy of NRF2 ESCC.

Design: We performed high-throughput screening of two compound libraries from which hit compounds were further validated in human ESCC cells and a genetically modified mouse model. The mechanism of action of one compound was explored by biochemical assays.

Results: Using high-throughput screening of two small molecule compound libraries, we identified 11 hit compounds as potential NRF2 inhibitors with minimal cytotoxicity at specified concentrations. We then validated two of these compounds, pyrimethamine and mitoxantrone, by demonstrating their dose- and time-dependent inhibitory effects on the expression of NRF2 and its target genes in two NRF2 human ESCC cells (KYSE70 and KYSE180). RNAseq and qPCR confirmed the suppression of global NRF2 signaling by these two compounds. Mechanistically, pyrimethamine reduced NRF2 half-life by promoting NRF2 ubiquitination and degradation in KYSE70 and KYSE180 cells. Expression of an Nrf2 allele in mouse esophageal epithelium (Sox2CreER;LSL-Nrf2) resulted in an NRF2 phenotype, which included squamous hyperplasia, hyperkeratinization, and hyperactive glycolysis. Treatment with pyrimethamine (30 mg/kg/day, p.o.) suppressed the NRF2 esophageal phenotype with no observed toxicity.

Conclusion: We have identified and validated pyrimethamine as an NRF2 inhibitor that may be rapidly tested in the clinic for NRF2 ESCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558795PMC
http://dx.doi.org/10.1016/j.redox.2023.102901DOI Listing

Publication Analysis

Top Keywords

nrf2
15
small molecule
8
nrf2 inhibitors
8
high-throughput screening
8
compound libraries
8
hit compounds
8
human escc
8
escc cells
8
expression nrf2
8
pyrimethamine
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!