A highly fluorescent Cu-responsive sensor, 2-amino-3-(BODIPYmethyleneamino)maleonitrile (BD) was constructed by attaching diaminomaleonitrile to a BODIPY scaffold. Cu can be selectively recognized on a 2-s time-scale by way of fluorescence emission. When Cu and BD coexist in solution, typical BODIPY emission was observed and the emission intensity could be increased to 334 times that of the blank dye solution. The mechanism of fluorescence increase is based on the generation of highly fluorescent species by Cu-triggered oxidative cyclization of the attached diaminomaleonitrile. The absolute fluorescence quantum yield (AFQY) of the cyclization product is 98% determined by integrating sphere. The highly emissive character can be attributed to the imidazole ring and dicarbonitrile on the BODIPY scaffold. It surpasses the meso-phenyl substituted analogue in AFQY and detection limits (DL). The specific Cu recognition behavior was also validated in Hela cells with high-contrast fluorescence images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!