Imaging and Analysis of the Dynamics of Filamentous Actin Structures in Live Endothelial Cells.

Methods Mol Biol

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.

Published: October 2023

The ability to view and record the movements of subcellular structures is a powerful tool that has accelerated the discovery and understanding of signaling mechanisms that control microvascular functions such as the control of endothelial permeability. Advances in molecular biology over the past few decades have facilitated the generation of fusion proteins in which fluorescent reporters based upon the structure of green fluorescent protein can be linked to proteins found in human endothelial cells, such as VE-cadherin or β-actin. These fusion proteins have been found to incorporate into structures alongside their native protein counterparts, allowing the dynamic visualization of how these subcellular structures are modified when cells are challenged with stimuli such as inflammatory mediators. The result of such studies has been a much more advanced view of the complex mechanisms by which endothelial cells maintain barrier properties than previously obtained by only viewing fixed cells labeled by immunofluorescence. Here, we describe our protocols that we have used to view the dynamics of actin filaments using time-lapse microscopy to record endothelial cells expressing GFP-actin and the analysis tools available to quantify dynamics of subcellular structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369499PMC
http://dx.doi.org/10.1007/978-1-0716-3429-5_11DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
subcellular structures
12
fusion proteins
8
cells
6
structures
5
endothelial
5
imaging analysis
4
analysis dynamics
4
dynamics filamentous
4
filamentous actin
4

Similar Publications

The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization.

View Article and Find Full Text PDF

Enhanced Endothelialization Using Resveratrol-Loaded Polylactic Acid-Coated Left Atrial Appendage Occluders in a Canine Model.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Fuwai Hospital, 167 Beilishi Road, Xicheng District, Beijing 100037, China.

Left atrial appendage occlusion (LAAO) is a well-established alternative to anticoagulation therapy for patients with atrial fibrillation who have a high bleeding risk. After occluder implantation, anticoagulation therapy is still required for at least 45 days until complete LAAO is achieved by neoendocardial coverage of the device. We applied a polylactic acid-resveratrol coating to the LAAO membrane to enhance endothelialization with the goal of shortening the anticoagulation therapy duration.

View Article and Find Full Text PDF

Nerve aberrations and vascular lesions in the distal lower limbs are the etiological factors for diabetic foot ulcers (DFUs). This study aimed to understand the regulatory mechanism of angiogenesis in patients with DFU by examining lncRNA, as well as to explore effective targets for diagnosing and treating DFU. The serum levels of A1BG-AS1 and miR-214-3p and the predictive power of A1BG-AS1 for DFU were determined by quantitative PCR and ROC analysis.

View Article and Find Full Text PDF

Aims: This study aimed to discover the regulatory mechanisms contributing to angiogenesis in nonproliferative diabetic retinopathy (NPDR).

Materials And Methods: This study employed a case-control design involving type 2 diabetes patients with and without NPDR. We utilised microRNA sequencing to analyse plasma and retina samples from T2D patients, to identify both existing and novel microRNAs relevant to retinal health.

View Article and Find Full Text PDF

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!