Ischemia/reperfusion injury in skeletal muscle leads to sterile inflammation and affects structure and function permanently. However, the main understanding of the molecular and cellular mechanisms mainly relies on in vitro and ex vivo investigations. Recent advances in intravital microscopy allow for insights into dynamic processes at the cellular and subcellular level under both physiological and pathophysiological conditions. Real-time intravital imaging by two-photon microscopy (2P-IVM) has emerged as a powerful tool in the evaluation of the cell-cell interaction and molecular biology of leukocytes in live animals. Acute ischemic injury in limbs may occur due to crush syndrome, compartment syndrome, and vascular diseases and injury as in acute peripheral arterial occlusion, caused by a diverse array of pathological conditions. Iatrogenic revascularization and restoration of perfusion results paradoxically in aggravated tissue injury. Furthermore, the effects of IR-injured skeletal muscle in clinical conditions such as compartment syndrome or crush syndrome may induce rhabdomyolysis and are associated with so-called remote injuries as acute kidney dysfunction. Here, we discuss the considerations for and describe a 2P-IVM method designed for visualization of leukocyte-endothelial interaction. This chapter will provide a detailed experimental setup and a step-by-step protocol for the dynamic imaging of leukocyte-endothelial-interaction in an ischemia/reperfusion injury model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3429-5_8 | DOI Listing |
Medicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFFEBS J
January 2025
INSERM UMR-1100, "Research Center for Respiratory Diseases (CEPR)", Tours, France.
Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!