Characteristics of deceleration capacity and deceleration runs in vasovagal syncope.

Clin Auton Res

Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, National Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Published: February 2024

AI Article Synopsis

  • This study investigates the role of vagal activity in vasovagal syncope (VVS) by measuring heart rate (HR) deceleration capacity (DC) and deceleration runs (DRs) in patients experiencing VVS episodes.
  • It involved 188 VVS patients (with some having positive head-up tilt test results) compared to 132 healthy controls, assessing their HR patterns over 24 hours.
  • Results showed that VVS patients had higher HR deceleration capacity but lower minimum heart rates and longer deceleration runs compared to controls, indicating unique HR profiles in VVS patients between syncopal events.

Article Abstract

Purpose: Increased vagal activity plays a prominent role in vasovagal syncope (VVS). The aim of this study was to characterize vagal function in VVS by evaluating the heart rate (HR) deceleration capacity (DC) and the HR deceleration runs (DRs) in patients with VVS between attacks.

Methods: A total of 188 consecutive VVS patients were enrolled in the study, of whom 129 had positive head-up tilt test (HUTT); 132 healthy participants were enrolled as controls. DC, DRs (DR2, i.e., episodes of 2 consecutive beat-to-beat HR decelerations), and the sum of DR8-10 (very long DR [VLDR]) were calculated using 24-h electrograms. Clinical characteristics, DC, and DRs were compared among syncope groups and controls.

Results: Patients with VVS had higher DC (10.63 ± 2.1 vs. 6.58 ± 1.7 ms; P < 0.001) and lower minimum HR and DR6-10 than controls. No significant differences in DC or DR6-10 were found between the patients with positive and those with negative HUTT results. In multivariate logistic regression analysis, minimum HR ≥ 40 bpm (odds ratio [OR] 0.408, 95% confidence interval [CI] 0.167-0.989; P = 0.048), daytime DC ≥ 7.37 ms (OR 3.040, 95% CI 1.220-7.576; P = 0.013), and VLDR ≥ 0.046% (OR 0.306, 95% CI 0.138-0.679; P = 0.004) were demonstrated to be risk factors significantly associated with VVS.

Conclusion: Compared to healthy controls, patients with VVS demonstrated distinct HR deceleration profiles between attacks, including overall higher DC and lower DR6-10.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10286-023-00989-zDOI Listing

Publication Analysis

Top Keywords

deceleration capacity
8
capacity deceleration
8
deceleration runs
8
vasovagal syncope
8
patients vvs
8
vvs
5
characteristics deceleration
4
runs vasovagal
4
syncope purpose
4
purpose increased
4

Similar Publications

Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides.

Int J Mol Sci

January 2025

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.

Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.

View Article and Find Full Text PDF

Structural design and safety performance of a novel high-strength steel lightweight guardrail.

PLoS One

January 2025

Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.

Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.

View Article and Find Full Text PDF

Background: Autonomic dysfunction plays an essential role in dementia, however, it is not known whether electrocardiogram autonomic dysfunction-related indicators are associated with the severity of dementia. In this study, we attempted to investigate whether these indicators are correlated in patients with vascular dementia and Alzheimer's disease compared with normal health individuals. For this purpose, we measured and analyzed the predictive value of heart rate deceleration capacity (DC), heart rate deceleration runs (DRs), heart rate acceleration capacity (AC) along with the plasma levels of lipoprotein-associated phospholipase A2 (Lp-PLA2).

View Article and Find Full Text PDF

Neuromodulation comes into focus as a non-pharmacological therapy with the vagus nerve as modulation target. The auricular vagus nerve stimulation (aVNS) has emerged to treat chronic diseases while re-establishing the sympathovagal balance and activating parasympathetic anti-inflammatory pathways. aVNS leads still to over and under-stimulation and is limited in therapeutic efficiency.

View Article and Find Full Text PDF

The study was designed to investigate the pattern of intraventricular Hemo-Dynamic Forces (HDF) and myocardial performance during exercise in Elite Cyclists (EC). Transthoracic stress echocardiography was performed on nineteen EC and thirteen age-matched sedentary controls (SC) at three incremental exercise intensities based on Heart Rate Reserve (HRR). Left Ventricular (LV) HDF were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base and latero-septal directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!