Antibody therapeutics have become a cornerstone of the pharmaceutical market due to their precise molecular targeting, favorable pharmacokinetic properties, and multitiered mechanisms of action. Since the first monoclonal antibody was clinically approved 35 years ago, there have been considerable advances in antibody technology. A major breakthrough has been the design of multispecific antibodies and antibody fusion proteins, which introduce the possibility of recognizing two or more targets with a single molecule. However, despite tremendous progress in the antibody engineering field, challenges in formulation, stability, and tissue penetration necessitate the design of novel antibody formats with improved pharmaceutical properties. There is a growing interest in development of single-domain antibodies, which harbor advantages such as high solubility, robust thermostability, and unique geometries that allow for access to cryptic epitopes. Chondrichthyes such as sharks and rays provide a source of single-domain antibody fragments known as variable new antigen receptors (VNARs), which have been exploited as molecular targeting agents. Here, we describe methods to engineer antibody fusion proteins that incorporate VNARs. We present multiple fusion topologies, and detail the design, expression, and purification for each format. These novel antibody fusion proteins hold great promise for a range of applications in biomedical research and therapeutic design.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3469-1_2DOI Listing

Publication Analysis

Top Keywords

antibody fusion
16
fusion proteins
16
antibody
10
variable antigen
8
molecular targeting
8
novel antibody
8
design
5
fusion
5
design construction
4
construction antibody
4

Similar Publications

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

A Lambda-evo (λ) phage platform for Zika virus E protein display.

Appl Microbiol Biotechnol

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No, 2508, C.P. 07360, Mexico City, Mexico.

One of the most significant bacteriophage technologies is phage display, in which heterologous peptides are exhibited on the virion surface. This work describes the display of λ decorative protein D linked to the E protein domain III of Zika virus (D-ZE), to the GFP protein (D-GFP), or to different domain III epitopes of the E protein (D-TD), exhibited on the surface of an in vitro evolved lambda phage (λ). This phage harbors a gene D deletion and was subjected to directed evolution using Escherichia coli W3110/pD-ZE as background.

View Article and Find Full Text PDF

Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger.

View Article and Find Full Text PDF

Background: Newcastle disease significantly impacts the global poultry industry and is prevalent in many African countries, including Ethiopia. The objective of this research is to determine the humoral immune response to Newcastle Disease Virus (NDV), identify the circulating NDV genotype, and evaluate the correlation between the diagnostic tests used in backyard chickens in the Jimma Zone, southwest Ethiopia.

Methods: A total of 90 swab and blood samples were purposively collected from symptomatic backyard chicken in the period between February and April 2022.

View Article and Find Full Text PDF

Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation.

J Virol

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!