Context: This research paper investigates the properties and potential applications of antiperovskite materials. Antiperovskites are a class of materials with a unique crystal structure, where the central atom is surrounded by a cage of anions. We review recent research on antiperovskite-based materials for energy storage, photovoltaics, catalysis, and sensors. We discovered that these materials display direct band gap semiconductors, strong absorption in the visible (VIS), ultra-violet (UV), and near infrared regions (NIR) based on their fundamental features, which is the most admirable quality that may be found in many optoelectronic devices. Both mechanical and thermodynamic stability have been confirmed for these materials. We discovered that these materials exhibit high figures of merit through the calculation of transport properties, which makes them a promising candidate for thermoelectric devices. It is anticipated that the proposed material BiPMg, which has a theoretical efficiency of 11.5%, will make a suitable photovoltaic absorber. This paper highlights the potential of these materials for future technological advancements.
Methods: Herein, we have used most authentic techniques to compute fundamental physical properties of these antiperovskites. Full-potential linear augmented plane wave (FP-LAPW) method has been used to investigate electronic, magnetic, optical properties, and make antiperovskites attractive for a variety of applications. In light of its implementation, we have checked the theoretical power conversion efficiency by first principles spectroscopic screening methodology, and inspect the fundamental physical parameters of antiperovskites, focusing on their potential as functional materials for energy and information technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-023-05732-z | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
The development of efficient sliding ferroelectric (FE) materials is crucial for advancing next-generation low-power nanodevices. Currently, most efforts focus on homobilayer two-dimensional materials, except for the experimentally reported heterobilayer sliding FE, MoS/WS. Here, we first screened 870 transition metal dichalcogenide (TMD) bilayer heterostructures derived from experimentally characterized monolayer TMDs and systematically investigated their sliding ferroelectric behavior across various stacking configurations using high-throughput calculations.
View Article and Find Full Text PDFBMC Psychol
January 2025
School of Public Administration and Policy, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, Liaoning, China.
This study examines the interplay between humble teacher leadership and student creative process engagement, grounded in Social Exchange Theory and Self-Determination Theory. Additionally, it analyzes the sequential mediating roles of student trust and psychological empowerment, as well as the moderating effect of proactive personality. Data were collected at three time points from 384 participants across Chinese universities and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with Smart PLS 4.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
Power quality (PQ) disturbances, such as voltage sags, are significant issues that can lead to damage in electrical equipment and system downtime. Detecting and classifying these disturbances accurately is essential for maintaining reliable power systems. This paper introduces a novel approach to voltage sag analysis by employing wavelet packet analysis combined with energy-based feature extraction to enhance PQ monitoring.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA.
Accurately representing the relationships between nitrogen supply and photosynthesis is crucial for reliably predicting carbon-nitrogen cycle coupling in Earth System Models (ESMs). Most ESMs assume positive correlations amongst soil nitrogen supply, leaf nitrogen content, and photosynthetic capacity. However, leaf photosynthetic nitrogen demand may influence the leaf nitrogen response to soil nitrogen supply; thus, responses to nitrogen supply are expected to be the largest in environments where demand is the greatest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!