How organs acquire their shapes is a central question in developmental biology. In plants, aerial lateral organs such as leaves initiate at the flanks of the growing meristem as dome-shaped primordia. These simple structures then grow out along multiple polarity axes to achieve a dizzying array of final shapes. Many of the hormone signaling pathways and genetic interactions that influence growth along these axes have been identified in the past few decades. Open questions include how and when initial gene expression patterns are set in organ primordia, and how these patterns are translated into the physical outcomes observed at the cellular and tissue levels. In this review, we highlight recent studies into the auxin signaling and gene expression dynamics that govern adaxial-abaxial patterning, and the contributions of mechanical forces to the development of flattened structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2023.102460 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Yanzhou District People's Hospital, Jining, Shandong, China.
Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.
Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.
World J Surg Oncol
January 2025
Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.
Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).
BMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!