Background And Objectives: Little is known regarding the association between intestinal motility patterns and cognitive function in individuals who are baseline cognitively healthy. The gut microbiome may contribute to the association. We examined the association between bowel movement (BM) pattern and cognitive function and explored the role of the gut microbiome in explaining this association.
Methods: In this prospective study, we leveraged 3 cohort studies, Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (HPFS). Participants reported BM frequency and subjective cognitive function. In a subset of NHSII participants, we assessed cognitive function using an objective neuropsychological battery. We profiled the gut microbiome in a subset of participants using whole-genome shotgun metagenomics. General linear models, Poisson regression, and logistic regression were used to quantify the association of BM frequency with different cognitive measurements.
Results: We followed 112,753 men and women (women: 87.6%) with a mean age of 67.2 years at baseline (NHS: 76 years, NHSII: 59 years, HPFS: 75 years) for a median follow-up of 4 years (NHSII and HPFS: 4 years, NHS: 2 years). Compared with those with BM once daily, participants with BM frequency every 3+ days had significantly worse objective cognitive function, equivalent to 3.0 (95% confidence interval [CI],1.2-4.7) years of chronological cognitive aging. We observed similar J-shape dose-response relationships of BM frequency with the odds of subjective cognitive decline and the likelihood of having more subsequent subjective cognitive complaints (both < 0.001). BM frequencies of every 3+ days and ≥twice/day, compared with once daily, were associated with the odds ratios of subjective cognitive decline of 1.73 (95% CI 1.60-1.86) and 1.37 (95% CI 1.33-1.44), respectively. BM frequency and subjective cognitive decline were significantly associated with the overall gut microbiome configuration (both < 0.005) and specific microbial species in the 515 participants with microbiome data. Butyrate-producing microbial species were depleted in those with less frequent BM and worse cognition, whereas a higher abundance of proinflammatory species was associated with BM frequency of ≥twice/day and worse cognition.
Discussion: Lower BM frequency was associated with worse cognitive function. The gut microbial dysbiosis may be a mechanistic link underlying the association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662989 | PMC |
http://dx.doi.org/10.1212/WNL.0000000000207849 | DOI Listing |
Clin EEG Neurosci
January 2025
Palma Sola Neurology Associates, Bradenton, FL, USA.
Evoked potential metrics extracted from an EEG exam can provide novel sources of information regarding brain function. While the P300 occurring around 300 ms post-stimulus has been extensively investigated in relation to mild cognitive impairment (MCI), with decreased amplitude and increased latency, the P200 response has not, particularly in an oddball-stimulus paradigm. This study compares the auditory P200 amplitudes between MCI (28 patients aged 74(8)) and non-MCI, (35 aged 72(4)).
View Article and Find Full Text PDFChild Adolesc Ment Health
January 2025
School of Public Health, Southeast University, Nanjing, China.
Background: Animal-assisted interventions (AAIs) have emerged as a promising nonpharmacological intervention option for children diagnosed with attention-deficit/hyperactivity disorder (ADHD). However, recent systematic reviews have been primarily narrative. Additionally, the pooled effectiveness of AAIs was absent from these systematic reviews.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.
Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults
Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).
J Alzheimers Dis
January 2025
Department of Neurology and the Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA.
Background: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or non-decline in global and domain-specific cognitive scores among community-dwelling older adults.
Objective: To evaluate the impact of adding NPS to AD biomarkers on ML model accuracy in predicting cognitive decline among older adults.
Methods: The study was conducted in the setting of the Mayo Clinic Study of Aging, including participants aged ≥ 50 years with information on demographics (i.
J Alzheimers Dis
January 2025
Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!