In this work, we presented the first report on the high-pressure structural stability and electrical transport characteristics in WSSe under different hydrostatic environments through Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy (HRTEM) coupled with first-principles theoretical calculations. For nonhydrostatic conditions, WSSe endured a phase transition at 15.2 GPa, followed by a semiconductor-to-metal crossover at 25.3 GPa. Furthermore, the bandgap closure was accounted for the metallization of WSSe as derived from theoretical calculations. Under hydrostatic conditions, ∼ 2.0 GPa pressure hysteresis was detected for the emergence of phase transition and metallization in WSSe because of the feeble deviatoric stress. Upon depressurization, the reversibility of the phase transition was substantiated by those of microscopic HRTEM observations under different hydrostatic environments. Our high-pressure investigation on WSSe advances the insightful understanding of the crystalline structure and electronic properties for the Janus transition-metal dichalcogenide (TMD) family and boosts prospective developments in functional devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02144 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.
The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.
Whereas single crystals of organic compounds that respond to heat or light have been reported and studied in detail, studies on crystalline organic compounds that elicit an extreme mechanical response are relatively rare in the chemical literature. A tetrafluoro(aryl)sulfanylated bicyclopentane synthesized in our laboratory was discovered to exhibit such behavior; i.e.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States.
Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China.
We report numerical studies of the magnetic phase transition and magnetocaloric effect in hexagonal MnCoGe alloys, controlled by axial strain applied along the -axis direction around room temperature. These studies are based on a combination of first-principles calculations and Monte Carlo simulations. Under compressive strains, the ferromagnetic state is stable, whereas under tensile strains, the ground state transforms into an antiferromagnetic state.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!