A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Per- and polyfluoroalkyl substances in water treatment residuals: Occurrence and desorption. | LitMetric

Per- and polyfluoroalkyl substances in water treatment residuals: Occurrence and desorption.

J Environ Qual

Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA.

Published: September 2023

Per- and polyfluoroalkyl substances (PFAS) in surface and ground waters supplying municipal drinking water are a growing concern. However, PFAS concentrations in water treatment residuals (WTRs)-a solid by-product of water treatment-have yet to be explored. In a first of its kind assessment, we examine PFAS occurrence in seven calcium (Ca)-, iron-, and aluminum-based drinking water treatment residuals (DWTRs) and one wastewater effluent treatment residual (WWETR) produced using aluminum chlorohydrate (ACH). Only perfluoroalkyl acids (PFAAs) were detected, with total PFAA concentrations in the seven DWTRs produced from naturally recharged water sources ranging from 0 to ∼3.3 μg kg ; no PFAS were detected in either of the Ca-DWTRs. The ACH-WWETR contained the highest number and concentration of PFAAs (34 μg kg ). Desorption of resident PFAAs from the WTRs was negligible for the carboxylates (PFCAs). Some desorption of the sulfonates (PFSAs) was detected, particularly for PFOS which had the highest concentration among all resident PFAAs. The ACH-WWETR was further evaluated for its potential to attenuate additional PFAAs (3500 μg mL total PFAAs) in a biosolid-derived porewater matrix. Sorption was highest for long-chain PFAAs and subsequent desorption of the adsorbed PFAAs ranged from 0% to no more than 26%, with the WWETR mass added strongly affecting both PFSA and PFCA sorption/desorption. These findings suggest that WTRs, if introduced into the environment, are unlikely to be a major source of PFAS. Also, the use of particular WTRs as amendments may provide a beneficial reduction in PFAS mobility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10978552PMC
http://dx.doi.org/10.1002/jeq2.20520DOI Listing

Publication Analysis

Top Keywords

water treatment
12
treatment residuals
12
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
drinking water
8
pfaas
8
resident pfaas
8
water
6
pfas
6
substances water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!