A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cobalt-based metal-organic framework-functionalized graphene oxide modified electrode as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. | LitMetric

This work reports the profit of using a MOF compound for developing a sensitive electrochemical sensor to free chlorine detection in an aqueous solution. Co-MOF and FGO composites were synthesized and combined with the carbon paste (CP) to prepare an efficient electrochemical sensor with high sensing ability. The fabricated Co-MOF and FGO composites were characterized by SEM, EDX, FT-IR, and XRD techniques. Meanwhile, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to assess the electrochemical performance of the Co-MOF-FGO/CP modified electrode. Under the optimized condition, the amperometric detection showed that the reduction current of free chlorine increased linearly with a coefficient determination of 0.995 during its wide concentration range of 0.1-700 ppm. Also the detection limit (LOD) (S/N = 3) was 0.01 ppm. The selectivity of the sensor was tested with possible interferences, and satisfactory results were obtained. The proposed sensor was successfully used to determine the free chlorine in tap water and swimming pool water real samples. The results suggested that this proposed sensor could pave the way for developing the electrochemical sensor of free chlorine in aqueous media with MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115334DOI Listing

Publication Analysis

Top Keywords

free chlorine
20
electrochemical sensor
12
modified electrode
8
chlorine aqueous
8
aqueous solution
8
sensor free
8
co-mof fgo
8
fgo composites
8
proposed sensor
8
electrochemical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!