A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revolutionizing drug formulation development: The increasing impact of machine learning. | LitMetric

Revolutionizing drug formulation development: The increasing impact of machine learning.

Adv Drug Deliv Rev

Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Acceleration Consortium, Toronto, ON M5S 3H6, Canada. Electronic address:

Published: November 2023

Over the past few years, the adoption of machine learning (ML) techniques has rapidly expanded across many fields of research including formulation science. At the same time, the use of lipid nanoparticles to enable the successful delivery of mRNA vaccines in the recent COVID-19 pandemic demonstrated the impact of formulation science. Yet, the design of advanced pharmaceutical formulations is non-trivial and primarily relies on costly and time-consuming wet-lab experimentation. In 2021, our group published a review article focused on the use of ML as a means to accelerate drug formulation development. Since then, the field has witnessed significant growth and progress, reflected by an increasing number of studies published in this area. This updated review summarizes the current state of ML directed drug formulation development, introduces advanced ML techniques that have been implemented in formulation design and shares the progress on making self-driving laboratories a reality. Furthermore, this review highlights several future applications of ML yet to be fully exploited to advance drug formulation research and development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2023.115108DOI Listing

Publication Analysis

Top Keywords

drug formulation
16
formulation development
16
machine learning
8
formulation science
8
formulation
7
revolutionizing drug
4
development
4
development increasing
4
increasing impact
4
impact machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!