Temperature cycling stability studies can be appropriately designed and utilized to ensure that drug product quality, efficacy, and safety are not compromised when materials are subjected to short term temperature excursions from intended storage that may occur during e.g., shipping, transport, or patient use. Some countries, such as Australia and Brazil, impose specific regulations that specify the need to conduct stability studies that are supportive of "real world" excursions as part of licensing approval requirements. These temperature cycling stability studies extend beyond what is described in ICH Guidelines Q1A(R2) and Q5C, and companies may be challenged in designing studies that not only satisfy country specific regulations, but also satisfy all global regulatory health authority expectations. This article focuses on responses to a cross-industry survey conducted within the International Consortium for Innovation and Quality (iqconsortium.org) member companies, regarding practices related to temperature cycling stability studies, in order to determine how these requirements are being interpreted and met. The results indicate that while there is no one-size-fits-all approach to performing temperature cycling stability studies, there are common and best practices that can be followed to satisfy global health authority regulatory guidelines and requirements. PURPOSE: The purpose of this paper is to describe the outcome of an industry survey and common/best practices on temperature cycling stability studies performed on drug product (DP) to satisfy the requirements established for marketing authorizations in Australia and Brazil or any other countries that may have similar requirements. The framework is proposed within the context of late phase and commercial development of common biological and/or large molecule modalities, such as monoclonal antibodies (mAbs, including bispecific antibodies), fusion proteins, complex proteins, oligonucleotides, and antibody-drug conjugates (ADCs), but many of the general principles involved may be applied to other therapeutics, such as Virus Like Particles (VLP), gene or cell therapies (GTx or CTx), or vaccines. For the purposes of this paper, temperature cycling stability studies refer to studies that are designed, in part, to support short term temperature excursions that drug product may be subjected to during shipping and storage activities and is outside of the labeled storage condition of the product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2023.09.014 | DOI Listing |
Sci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
This article introduces an innovative multipurpose system that integrates a solar power plant with a coastal wind farm to generate refrigeration for refinery processes and industrial air conditioning. The system comprises multiple wind turbines, solar power plants, the Kalina cycle to provide partial energy for the absorption refrigeration cycle used in industrial air conditioning, and a compression refrigeration cycle for propane gas liquefaction. An extensive energy and exergy analysis was conducted on the proposed system, considering various thermodynamic parameters such as the solar power plant's energy output, the absorption chiller's cooling load, the electricity generated by the turbines, the wind turbines' power output, and the energy efficiency and exergy of each cycle within the system.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
To enhance sustainability and resilience against climate change in infrastructure, a quantitative evaluation of both environmental impact and cost is important within a life cycle framework. Climate change effects can lead performance deterioration in bridge components during their operational phase, highlighting the necessity for a risk-based evaluation process aligned with maintenance strategies. This study employs a two-phase life cycle assessments (LCA) framework.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!