Technogenic soil salinisation, vegetation, and management shape microbial abundance, diversity, and activity.

Sci Total Environ

Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland. Electronic address:

Published: December 2023

The importance of the microbiome in the functioning of degraded lands in industrialised zones is significant. However, little is known about how environmental parameters affect microbial abundance, structure, diversity, and especially specific guilds involved in the nitrogen cycle in saline soils influenced by the soda industry. To address this knowledge gap, our research focused on assessing the microbiota in relation to soil properties and plant species composition across two transects representing different types of land use: saline wasteland and arable fields. Our findings show that the microbial communities were the most affected not only by soil salinity but also by pH and the composition of plant species. Taxonomic variability was the most shaped by salinity together with management type and CaCO content. The impact of salinity on the soil microbiome was manifested in a reduced abundance of bacteria and fungi, a lower number of observed phylotypes, reduced modularity, and a lower abundance of the nitrifying guild. Denitrification and nitrogen fixation were less affected by salinity. The last process was correlated with calcium carbonate. CaCO was also associated with microbial taxonomic variability and the overall microbial activity caused by hydrolases, which could aid organic matter turnover in saline but carbonate-rich sites. Bacterial genera such as Bacillus, Peanibacillus, and Rhodomicrobium, in addition to fungal taxa such as Cadophora, Mortierella globalpina, Preussia flanaganii, and Chrysosporium pseudomerdarium, show potential as favourable candidates for possible bioremediation initiatives. These results can be applied to future land reclamation projects. FUNDING INFORMATION: This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167380DOI Listing

Publication Analysis

Top Keywords

microbial abundance
8
plant species
8
taxonomic variability
8
microbial
5
technogenic soil
4
soil salinisation
4
salinisation vegetation
4
vegetation management
4
management shape
4
shape microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!