High-density lipoprotein (HDL) cholesterol is a well-known biomarker, which has been associated with reduction in the risk of cardiovascular diseases (CVD). However, some HDL anti-atherosclerotic functions may be impaired without altered HDL-cholesterol (HDL-C) level via its dysfunctional proteins or other physiological reactions in vivo. We previously showed that activated mast cell-derived chymase could modestly cleave apolipoprotein A-I (apoA-I) in HDL and further easily cleave lipid-free apoA-I. In contrast, myeloperoxidase (MPO) secreted by macrophages, the main cell type in atherosclerotic plaques, could oxidize HDL proteins, which might modify their tertiary structures, increasing their susceptibility to other enzymes. Here we focused on the co-modification and impact of chymase and MPO, usually secreted during inflammation from cells with possible co-existence in atheromas, on HDL. Only after sequential treatment with MPO and then chymase, two novel truncated apoA-I fragments were generated from HDL. One fragment was 16.5 kDa, and the cleavage site by chymase after MPO modification was the C-terminal of Tyr in apoA-I, cross-validated by three different mass spectrometry methods. This novel apoA-I fragment can be trapped in HDL particles to avoid kidney glomerular filtration and has a specific site for antibody generation for ELISA tests. As such, its quantification can be useful in predicting patients with CVD having normal HDL-C levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2023.09.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!