In recent years, the neuroprotective potential of mesenchymal stroma-/stem-like cells (MSC) as well as of MSC-derived extracellular vesicles (EVs) like exosomes has been intensively explored. This included preclinical evaluation regarding treatment of neurodegenerative disorders such as the fatal motor neuron disease amyotrophic Lateral Sclerosis (ALS). Several studies have reported that MSC-derived exosomes can stimulate tissue regeneration and reduce inflammation. MSC release EVs and trophic factors and thereby modify cell-to-cell communication. These cell-free products may protect degenerating motor neurons (MNs) and represent a potential therapeutic approach for ALS. In the present study we investigated the effects of exosomes derived from a permanently growing MSC line on both, wild type and ALS (SOD1 transgenic) primary motor neurons. Following application in a normal and stressed environment we could demonstrate beneficial effects of MSC exosomes on neurite growth and morphology indicating the potential for further preclinical evaluation and clinical therapeutic development. Investigation of gene expression profiles detected transcripts of several antioxidant and anti-inflammatory genes in MSC exosomes. Characterization of their microRNA (miRNA) content revealed miRNAs capable of regulating antioxidant and anti-apoptotic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137493DOI Listing

Publication Analysis

Top Keywords

motor neurons
12
derived permanently
8
permanently growing
8
preclinical evaluation
8
msc exosomes
8
msc
6
exosomes
5
protective effects
4
effects evs/exosomes
4
evs/exosomes derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!