Electrocoagulation with electrical polarity inversion was used to treat oil in water emulsions (145 ± 5 mg dm) using a cylindrical 4.8 dm reactor in continuous mode. The effects of spatial time and time between polarity inversion were explored using a three-level full factorial design (3), followed by Spearman correlation (p), which has shown that the aluminum concentration in the treated effluent is not directly dependent on the mass of aluminum released by the electrodes. Nonetheless, the loss of mass of the electrodes is correlated (p = 0.6970) to oil removal and to less electric power consumption (p = -0.6909). Surface response analysis revealed that increasing the number of inversion cycles reduces electrode degradation. The treatment reduced the effluent's chemical oxygen demand by over 92.8%. Regarding environmental impact, there is an inverse statistical correlation between aluminum in the treated effluent and oil removal (p = -0.7426), indicating that removing more oil with less environmental impact is possible. The better condition, considering oil removal and lower electrode consumption, was obtained with a spatial time of 36 min and a polarity inversion time of 10 s; for this condition, oil removal reached 87.0% with an energy expenditure of about 7.21 kW h.m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119072 | DOI Listing |
BMC Ophthalmol
January 2025
Dept. of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.
Purpose: To report a rare case of a Coats-like response developing after vitreoretinal surgery for proliferative diabetic retinopathy (PDR) and its successful management with retinal laser photocoagulation and adjunctive intravitreal steroids.
Case Description: A 52-year-old woman with a five-year history of type 2 diabetes mellitus and hypertension presented with decreased vision in the left eye (counting fingers at 1 m). Examination revealed high-risk PDR in both eyes, with a subtotal macula-off combined retinal detachment in the left eye.
J Environ Manage
January 2025
Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.
This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.
View Article and Find Full Text PDFLangmuir
January 2025
Materials Science and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
Meso/microporous nano silica modified with macromolecular polymers produces attractive hybrids that repel water and have a hydrophobic surface, making them highly effective for targeting and eliminating organic contaminants in aquatic environments. In this study, nano silica was functionalized with silicone oil, an oligomeric siloxane derivative, to produce a hydrophobic silica nano hybrid characterized by a non-wetting water contact angle of 139°. This hydrophobic hybrid nano silica showed a sustainable floating nature on water even in turbulent streams.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.
View Article and Find Full Text PDFACS Environ Au
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-Ku, Kobe 657-8501, Japan.
Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!