A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of nickel substitution on structural, dielectric, magnetic, and electrochemical properties of copper ferrite nanostructures for energy storage devices. | LitMetric

Nickel-substituted copper ferrite nanoparticles (NP) (CuNiFeO) were prepared using a cost-effective hydrothermal method. X-ray diffraction (XRD) pattern revealed a single-phase cubic spinel structure. The increase in lattice parameters and decrease in crystallite size are associated with the replacement of Cu ions by Ni ions in the host lattice of copper ferrite. The optimized CuNiFeO composition was subsequently annealed at 750 °C and 850 °C for further studies. Fourier transform infrared (FT-IR) analysis shows the existence of two promising fundamental adsorption peaks at 465 and 582 cm, related to the metal ion stretching vibrations at the tetrahedral (A) and octahedral (B) sites, respectively. The local disorder at both the A and B sublattices upon the incorporation of Ni was observed from the Raman analysis. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) images shows the formation of agglomerates composed of nano-sized spherical particles. A high Barrett-Joyner-Halenda (BJH) surface area was achieved 17.25 m/g with a particle stability of -11.1 mV obtained by the zeta potential. Both the dielectric loss and dielectric constant are decreased, whereas the AC conductivity gets increased with increasing frequency. The magnetization-field hysteresis curves exhibited ferromagnetic behavior with a pseudo-single domain, and the cyclic voltammetry study revealed a pseudocapacitive trend. This study highlights the importance of Ni substitution to control the physicochemical properties of spinel-phase CuFeO for diverse applications, such as energy storage and lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.09.113DOI Listing

Publication Analysis

Top Keywords

copper ferrite
12
energy storage
8
electron microscopy
8
impact nickel
4
nickel substitution
4
substitution structural
4
structural dielectric
4
dielectric magnetic
4
magnetic electrochemical
4
electrochemical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!