Glycine betaine (GB) is a bioactive molecule protecting plants from abiotic stress. This study fabricated an ultrasensitive molecular imprinted polymer (MIP) electrochemical sensor to perform in vivo measurements of GB. Polydopamine (PDA) was formed on the carboxylated multi-walled carbon nanotubes (COOH-MWCNTs) by spontaneous polymerisation of dopamine (DA). Then MIP-coated MWCNTs were fabricated on a Au nanoparticles (NP) and thionine (Thi) modified screen-printed electrode (SPE). The MIP-COOH-MWCNTs/pThi/AuNPs/SPE exhibited an ultrasensitive GB detection response between 1 fmol/L and 10 mmol/L (R = 0.996) with a low detection limit (0.707 fmol/L, S/N = 3). In vivo measurement of GB in cucumber seedling leaves under different salinity stress conditions confirmed the practical applicability of the MIP sensor. Thus, this study proposed a novel and promising fabrication method for an electrochemical MIP sensor that has broad application prospects in precision agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.137554DOI Listing

Publication Analysis

Top Keywords

ultrasensitive molecular
8
molecular imprinted
8
electrochemical sensor
8
glycine betaine
8
mip sensor
8
imprinted electrochemical
4
sensor
4
sensor vivo
4
vivo determination
4
determination glycine
4

Similar Publications

To explore whether ultra-sensitive circulating tumor DNA (ctDNA) profiling enables early prediction of treatment response and early detection of disease progression, we applied NeXT Personal, an ultra-sensitive bespoke tumor-informed liquid biopsy platform, to profile tumor samples from the KeyLargo study, a phase II trial in which metastatic esophagogastric cancer (mEGC) patients received capecitabine, oxaliplatin, and pembrolizumab. All 25 patients evaluated were ctDNA-positive at baseline. Minimal residual disease (MRD) events varied from 406,067 down to 1.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

Gold nanobowls (AuNBs) synthesized by the template-free method were deposited on graphene oxide (GO) to obtain an ultrasensitive surface enhanced Raman spectroscopy (SERS) platform for folic acid (FA) detection. GO was conditioned in aqueous solutions at various pH values to optimize the adsorption of the FA molecule and the intensity of the SERS signal. It was found that the conditioning procedure influences the orientation of FA on the SERS supports and the quality of the spectra in result.

View Article and Find Full Text PDF

BPV1, BPV2, BPV13, and BPV14 are all genotypes of bovine delta papillomaviruses (δPV), of which the first three cause infections in horses and are associated with equine sarcoids. However, BPV14 infection has never been reported in equine species. In this study, we examined 58 fresh and thawed commercial semen samples from healthy stallions.

View Article and Find Full Text PDF

In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!