A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteogenic differentiation of human amniotic mesenchymal stem cells by phycocyanin and phycoerythrin pigments isolated from Spirulina platensis and Gracilaria gracilis algae. | LitMetric

Bone regeneration is a multistep and regular physiological process that occurs normally in fracture repair and bone defects. However, some factors such as aging, particular diseases and some drugs prevent or slowdown bone natural healing. Cell therapy using stem cells and differentiation activating factors is an effective treatment method for bone regeneration triggering in unusual conditions. Therefore, in the present study the effect of phycocyanin and phycoerythrin pigments which isolated from Spirulina platensis and Gracilaria gracilis algae was investigate on osteogenic differentiation potency of human Amniotic Mesenchymal Stem Cells (hAMSCs). For this purpose, hAMSCs were exposed to 300, 500, and 700 µg/ml concentrations of phycocyanin and phycoerythrin pigments and then the cells viability was measured with MTT assay in 48 and 72 h after treatment. The osteo-differentiation level of cells was studied by measuring ALP activity using calorimetric method and Alizarin red staining for calcium deposition in 7 and 21 days after treatment. Also, total RNA of cells was extracted in different time periods and then cDNA synthesized with specific primers, and relative expression of Runx2, β-catenin and Osteocalcin genes were investigated using SYBR Green RT-qPCR technique. Osteogenic differentiation of hAMSCs that treated with pigments was confirmed by mineral deposits staining and increased level of ALP activity. Furthermore, these pigments elevated significantly the expression of osteogenic marker genes compared to control samples and caused hAMSCs to differentiate into osteoblast cells. According to these results, phycocyanin and phycoerythrin may suggest as suitable osteogenic supplements with low toxicity, low cost and high efficiency, although the molecular mechanism of its efficacy is not available yet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2023.102216DOI Listing

Publication Analysis

Top Keywords

phycocyanin phycoerythrin
16
osteogenic differentiation
12
stem cells
12
phycoerythrin pigments
12
human amniotic
8
amniotic mesenchymal
8
mesenchymal stem
8
cells phycocyanin
8
pigments isolated
8
isolated spirulina
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!