Topological Circular Dichroism in Chiral Multifold Semimetals.

Phys Rev Lett

Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.

Published: September 2023

Uncovering the physical contents of the nontrivial topology of quantum states is a critical problem in condensed matter physics. Here, we study the topological circular dichroism in chiral semimetals using linear response theory and first-principles calculations. We show that, when the low-energy spectrum respects emergent SO(3) rotational symmetry, topological circular dichroism is forbidden for Weyl fermions, and thus is unique to chiral multifold fermions. This is a result of the selection rule that is imposed by the emergent symmetry under the combination of particle-hole conjugation and spatial inversion. Using first-principles calculations, we predict that topological circular dichroism occurs in CoSi for photon energy below about 0.2 eV. Our Letter demonstrates the existence of a response property of unconventional fermions that is fundamentally different from the response of Dirac and Weyl fermions, motivating further study to uncover other unique responses.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.116603DOI Listing

Publication Analysis

Top Keywords

topological circular
16
circular dichroism
16
dichroism chiral
8
chiral multifold
8
first-principles calculations
8
weyl fermions
8
topological
4
dichroism
4
multifold semimetals
4
semimetals uncovering
4

Similar Publications

Polyesters featuring a linear topology and in-chain 1,3-cyclobutane rings, synthesized via ring-opening polymerization (ROP) of 2-oxabicyclo[2.1.1]hexan-3-one (4R-BL, R = Bu, Ph) through a coordination-insertion mechanism, display excellent thermal and hydrolytic stability, making them promising candidates for sustainable circular materials.

View Article and Find Full Text PDF

Topological quasiparticles, including skyrmions and merons, are topological textures with sophisticated vectorial structures that can be used for high-density information storage, precision metrology, position sensing, etc. Here, we realized the optical generation and continuous transformation of plasmonic field skyrmions. We generated the isolated Néel-type skyrmion using surface plasmon polaritons (SPPs) excited by a focused structured light on a silver film.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Comparative Structural and Biophysical Investigation of Toxin I (LyeTx I) and Its Analog LyeTx I-b.

Antibiotics (Basel)

January 2025

Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Campus JK, Diamantina 39100-000, MG, Brazil.

This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider , and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. : To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with H-Ala and N-Leu to facilitate structural studies via NMR spectroscopy.

View Article and Find Full Text PDF

Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!