Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
When a hyperelastic hydrogel confined between two parallel glass plates begins to dry from a lateral boundary, the volume lost by evaporation is accommodated by an inward displacement of the air-hydrogel interface that induces an elastic deformation of the hydrogel. Once a critical front displacement is reached, we observe intermittent fracture events initiated by a geometric instability resulting in localized bursts at the interface. These bursts relax the stresses and irreversibly form air cavities that lead to cellular networks. We show that the spatial extent of the strain field prior to a burst, influenced by the air-hydrogel interfacial tension and the confinement of the gel, determines the characteristic size of the cavities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.118202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!