A rapid two-dimensional electrophoretic system for evaluating the penetration of proteins into hydrogels (used as contact lenses) is presented. The proteins are sieved through the hydrogel under conditions which produce minimum deformity of pores. In another step, the proteins migrating through the pores are identified. An effective pore size measurement is deduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-2697(86)90622-6 | DOI Listing |
Bioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFWhispering-gallery-mode (WGM) microresonators are typically studied for surface (bio)chemical sensing, mainly relying on small refractive index changes occurring within a nanometer range from their walls surface. This high sensitivity, reaching up to 10 refractive index unit (RIU, ∼2.5 nm/RIU and measured at a femtometer resolution) leads to broad ranges of applications, especially for biosensing purposes through the monitoring of molecular binding events.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
Hydrogels demonstrate effective lubricating properties, but the underlying mechanisms at the nanoscale remain elucidated. In this study, a novel strategy is proposed by fabricating the hydrogel probes compatible with atomic force microscopy (AFM) to establish a superlubrication system based on the hydration interactions. The probe is made of polyethylene glycol diacrylate (PEGDA)-based hydrogel microspheres, which can achieve an extremely low friction coefficient of 0.
View Article and Find Full Text PDFMater Today Bio
February 2025
China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!