Nanoscale Prediction of the Thermal, Mechanical, and Transport Properties of Hydrated Clay on 10- and 10-Fold Larger Length and Time Scales.

ACS Nano

Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Published: October 2023

Coupled thermal, hydraulic, mechanical, and chemical (THMC) processes, such as desiccation-driven cracking or chemically driven fluid flow, significantly impact the performance of composite materials formed by fluid-mediated nanoparticle assembly, including energy storage materials, ordinary Portland cement, bioinorganic nanocomposites, liquid crystals, and engineered clay barriers used in the isolation of hazardous wastes. These couplings are particularly important in the isolation of high-level radioactive waste (HLRW), where heat generated by radioactive decay can drive the temperature up to at least 373 K in the engineered barrier. Here, we use large-scale all-atom molecular dynamics simulations of hydrated smectite clay nanoparticle assemblages to predict the fundamental THMC properties of hydrated compacted clay over a wide range of temperatures (up to 373 K) and dry densities relevant to HLRW management. Equilibrium simulations of clay-water mixtures at different hydration levels are analyzed to quantify material properties, including thermal conductivity, heat capacity, thermal expansion, suction, water and ion self-diffusivity, and hydraulic conductivity. Predictions are validated against experimental results for the properties of compacted bentonite clay. Our results demonstrate the feasibility of using atomistic-level simulations of assemblages of clay nanoparticles on scales of tens of nanometers and nanoseconds to infer the properties of compacted bentonite on scales of centimeters and days, a direct upscaling over 6 orders of magnitude in space and 15 orders of magnitude in time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569101PMC
http://dx.doi.org/10.1021/acsnano.3c05751DOI Listing

Publication Analysis

Top Keywords

properties hydrated
8
properties compacted
8
compacted bentonite
8
orders magnitude
8
clay
6
properties
5
nanoscale prediction
4
thermal
4
prediction thermal
4
thermal mechanical
4

Similar Publications

Thiol-modified hyaluronic acid and hydroxyl radical-induced oxidation synergistically enhance the gelling capacity of ginkgo seed proteins.

Food Chem

January 2025

Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The objective of this work was to investigate the effect of synthetic thiol-modified hyaluronic acid (HASH) on the gelation properties of ginkgo seed protein isolate (GSPI) under non-oxidizing (NOX) or oxidizing (OX) conditions. Under NOX conditions, HASH mediated the disruption of disulfide bonds, leading to a dose-dependent dissociation of GSPI. Conversely, in OX conditions, hydroxyl radical-induced oxidation facilitated the formation of interprotein disulfide bonds.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

This study used coal combustion products (CCP) with different calcium contents to replace partial aluminate cement (AC) in equal amounts, and studied the effect of calcium contents on the setting time and early compressive strength of AC. The setting time and early compressive strength were further regulated by adding retarder. The results showed that the higher the calcium content of CCP (CCP2 contains higher calcium content), the shorter the setting time and the higher the 2 h compressive strength after replacing part of cement.

View Article and Find Full Text PDF

Alkali and sulfate effects on mechanical properties and microscopic mechanisms of slag and fly ash geopolymers.

Sci Rep

January 2025

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.

Aiming at the problem that it is difficult to realize low-cost, high-performance and large-scale utilization of cementitious materials prepared from bulk solid wastes, this paper constructs a set of composite cementitious system based on alkaline activation of slag and fly ash (FA) by calcium carbide slag (CCS) and synergistic activation of sodium sulfate (NaSO) as a chemical dopant. The influence of factors such as solid waste type, mixing ratio, and NaSO content on the mechanical properties of composite cementitious systems was investigated by assessing compressive strength and analyzing microstructure using XRD, SEM-EDS, and FTIR. The test results indicate that CCS and NaSO exert significant influences on the strength of the composite cementitious system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!