Potential Candidate Genes for Therapeutic Targeting in Chronic Myeloid Leukemia: A Pilot Study.

Asian Pac J Cancer Prev

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahaman Bin Faisal University, Dammam, Saudi Arabia.

Published: September 2023

Background: Chronic myeloid leukemia (CML) is a prevalent hematological malignancy known for the presence of the Philadelphia chromosome and activation of the BCR-Abl kinase activity. Although tyrosine kinase inhibitors are widely used as the standard treatment, resistance remains a concern among certain patients. This study aimed to investigate the gene expression profile of a group of CML patients in comparison to a control group in order to identify novel candidate genes associated with the disease.

Methods: Whole transcriptome sequencing was performed, and gene expression levels were validated using quantitative real-time PCR. Additionally, single nucleotide and insertion/deletion variants were analyzed in the selected candidate genes among 10 CML patients and 4 healthy control subjects.

Results: Analysis revealed a set of differentially expressed genes, whose up- or downregulation was further confirmed by qRT-PCR. Among the upregulated genes in the patient group were ribosomal protein like (RPL) members, specifically RPL9, RPL34, RPL36A, and RPL39, while downregulation was observed in CCDC170, LDB1, and SBF1 compared to the healthy subjects. Furthermore, gene variant studies identified novel genetic changes in these candidate genes, suggesting potential clinical significance in CML.

Conclusions: This study highlights RPL9, RPL34, RPL36A, RPL39, CCDC170, LDB1, and SBF1 as potential targets in CML. Additionally, it underscores the importance of investigating these genes and their variants in larger cohort studies to assess their clinical significance in CML patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762750PMC
http://dx.doi.org/10.31557/APJCP.2023.24.9.3077DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
cml patients
12
chronic myeloid
8
myeloid leukemia
8
gene expression
8
rpl9 rpl34
8
rpl34 rpl36a
8
rpl36a rpl39
8
ccdc170 ldb1
8
ldb1 sbf1
8

Similar Publications

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton.

Mol Plant Pathol

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!