Background: Chronic myeloid leukemia (CML) is a prevalent hematological malignancy known for the presence of the Philadelphia chromosome and activation of the BCR-Abl kinase activity. Although tyrosine kinase inhibitors are widely used as the standard treatment, resistance remains a concern among certain patients. This study aimed to investigate the gene expression profile of a group of CML patients in comparison to a control group in order to identify novel candidate genes associated with the disease.
Methods: Whole transcriptome sequencing was performed, and gene expression levels were validated using quantitative real-time PCR. Additionally, single nucleotide and insertion/deletion variants were analyzed in the selected candidate genes among 10 CML patients and 4 healthy control subjects.
Results: Analysis revealed a set of differentially expressed genes, whose up- or downregulation was further confirmed by qRT-PCR. Among the upregulated genes in the patient group were ribosomal protein like (RPL) members, specifically RPL9, RPL34, RPL36A, and RPL39, while downregulation was observed in CCDC170, LDB1, and SBF1 compared to the healthy subjects. Furthermore, gene variant studies identified novel genetic changes in these candidate genes, suggesting potential clinical significance in CML.
Conclusions: This study highlights RPL9, RPL34, RPL36A, RPL39, CCDC170, LDB1, and SBF1 as potential targets in CML. Additionally, it underscores the importance of investigating these genes and their variants in larger cohort studies to assess their clinical significance in CML patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762750 | PMC |
http://dx.doi.org/10.31557/APJCP.2023.24.9.3077 | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.
Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.
Virulence
December 2025
Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, 257091, Shandong, People's Republic of China.
Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.
View Article and Find Full Text PDFSci Rep
January 2025
College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China.
Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!