A reaction-diffusion hepatitis B virus (HBV) infection model based on the mean-reverting Ornstein-Uhlenbeck process is studied in this paper. We demonstrate the existence and uniqueness of the positive solution by constructing the Lyapunov function. The adequate conditions for the solution's stationary distribution were described. Last but not least, the numerical simulation demonstrated that reversion rates and noise intensity influenced the disease and that there was a stationary distribution. It was concluded that the solution tends more toward the stationary distribution, the greater the reversion rates and the smaller the noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540978PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292073PLOS

Publication Analysis

Top Keywords

stationary distribution
16
reaction-diffusion hepatitis
8
hepatitis virus
8
infection model
8
ornstein-uhlenbeck process
8
reversion rates
8
stationary
4
distribution reaction-diffusion
4
virus infection
4
model driven
4

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

General matrix multiplication (GEMM) in machine learning involves massive computation and data movement, which restricts its deployment on resource-constrained devices. Although data reuse can reduce data movement during GEMM processing, current approaches fail to fully exploit its potential. This work introduces a sparse GEMM accelerator with a weight-and-output stationary (WOS) dataflow and a distributed buffer architecture.

View Article and Find Full Text PDF

Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, , Essential Oil.

Biomolecules

January 2025

United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.

Tea tree oil (TTO), acquired from (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge.

View Article and Find Full Text PDF

A kinetic exchange model is developed to investigate wealth distribution in a market. The model incorporates a value function that captures the agents' psychological traits, governing their wealth allocation based on behavioral responses to perceived potential losses and returns. To account for the impact of transaction frequency on wealth dynamics, a non-Maxwellian collision kernel is introduced.

View Article and Find Full Text PDF

Thompson Sampling for Non-Stationary Bandit Problems.

Entropy (Basel)

January 2025

School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Non-stationary multi-armed bandit (MAB) problems have recently attracted extensive attention. We focus on the abruptly changing scenario where reward distributions remain constant for a certain period and change at unknown time steps. Although Thompson sampling (TS) has shown success in non-stationary settings, there is currently no regret bound analysis for TS with uninformative priors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!