New variants of SARS-CoV-2 that can escape immune response continue to emerge. Consequently, there is an urgent demand to design small molecule therapeutics inhibiting viral entry to host cells to reduce infectivity rate. Despite numerous in silico and in situ studies, the structural requirement of designing viral-entry inhibitors effective against multiple variants of SARS-CoV-2 has yet to be described. Here we systematically screened the binding of various natural products (NPs) to six different SARS-CoV-2 receptor-binding domain (RBD) structures. We demonstrate that Multi-structural Molecular Docking (MOD) combined with molecular dynamics calculations allowed us to predict a vulnerable site of RBD and the structural requirement of ligands binding to this vulnerable site. We expect that our findings lay the foundation for in silico screening and identification of lead molecules to guide drug discovery into designing new broad-spectrum lead molecules to counter the threat of future variants of SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541870PMC
http://dx.doi.org/10.1038/s41598-023-42015-2DOI Listing

Publication Analysis

Top Keywords

variants sars-cov-2
12
multi-structural molecular
8
molecular docking
8
docking mod
8
mod combined
8
combined molecular
8
molecular dynamics
8
designing broad-spectrum
8
entry host
8
host cells
8

Similar Publications

Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.

View Article and Find Full Text PDF

Background/objectives: The efficacy of monovalent BNT162b2 Omicron XBB.1.5 booster vaccination in liver transplant recipients (LTRs) has yet to be described, particularly regarding the immune response to emerging variants like JN.

View Article and Find Full Text PDF

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!