The existing implementations of reconfigurable diffractive neural networks rely on both a liquid-crystal spatial light modulator and a digital micromirror device, which results in complexity in the alignment of the optical system and a constrained computational speed. Here, we propose a superpixel diffractive neural network that leverages solely a digital micromirror device to control the neuron bias and connection. This approach considerably simplifies the optical system and achieves a computational speed of 326 Hz per neural layer. We validate our method through experiments in digit classification, achieving an accuracy of 82.6%, and action recognition, attaining a perfect accuracy of 100%. Our findings demonstrate the effectiveness of the superpixel diffractive neural network in simplifying the optical system and enhancing computational speed, opening up new possibilities for real-time optical information processing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.498712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!