As an essential component of the vortex beam, the fractional vortex beam has significantly advanced various applications, such as optical imaging, optical communication, and particle manipulation. However, practical applications face a significant challenge as generating high average power fractional vortex beams remains difficult. Here, we proposed and experimentally demonstrated a high average power mode-tunable fractional vortex beam generator based on an internally sensed coherent beam combining (CBC) system. We presented the first, to the best of our knowledge, successful generation of a 1.5 kW continuous wave fractional vortex beam. Moreover, real-time tuning of the topological charge (TC) from -2/3 to +2/3 was easily achieved using the programmable liquid crystals (LCs). More importantly, the fractional vortex beam copier was presented as well, and the generated fractional vortex beam could be easily transformed into a fractional vortex beam array by changing the fill factor of the laser array. This work can pave the path for the practical implementation of high average power structured light beams.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.502321DOI Listing

Publication Analysis

Top Keywords

fractional vortex
32
vortex beam
32
high average
12
average power
12
beam
10
vortex
9
fractional
8
mode-tunable fractional
8
coherent beam
8
beam combining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!