Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron availability limits marine ecosystem activities in large areas of the ocean. However, the sources and seasonal supply of iron, critically important for controlling surface ocean biogeochemistry and carbon cycling, are poorly understood. The western subarctic Pacific is a high-nutrient and low-chlorophyll region, and despite high concentrations of macronutrients, iron limits phytoplankton production in summer. Here, we determine the seasonal deposition flux of Asian dust using scanning electron microscope-cathodoluminescence analysis of single quartz particles derived from the western subarctic Pacific during 2003-2022 to trace provenance. We found a high (up to 6.9 mg m day) deposition flux of Asian dust in May, June, and early July, with an annual average of 1.0 ± 0.2 mg m day. The supply of dissolved-iron flux calculated from Asian dust was 0.9 ± 0.3 µg m day during the high productivity season (April-July), which is approximately half that from the deeper part of the ocean, calculated from vertical profiles of dissolved iron. Our study provides a reliable approach for estimating iron supply from dust to the surface ocean that may be critical for sustaining biological productivity under future ocean stratification, which suppresses nutrient supply from the subsurface ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541437 | PMC |
http://dx.doi.org/10.1038/s41598-023-41201-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!